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Abstract A generalization of the Friedman-Lemaitre
-Robertson-Walker (FLRW) models is obtained by weaken-
ing the assumpticns under which they are derived from
Einstein”s relativity. It is assumed that each section
t = const is homogeneous and isotropic while the space-
time itself not necessarily has any symmetry. The re-
sulting Stephani Universe has an undetermined function
of time in place of the constant curvature index k. In
this Universe, some spatial sections may be open while
others will be closed. Its geometrical picture is pre-
sented and its physical properties are discussed.

1. GENERALIZATIONS ARE COMPATIBLE WITH OBSERVATIONS.

The Friedman-Lemaitre-Robertson-Walker (FLRW) so-
lutions of Einstein”s field eguations (1 - 4) were der-
ived under the very strong assumptions that the space-
time 1is homogeneous and isotropic. These assumptions
were not meant to reflect our knowledge about the Univ-
erse, but rather our ignorance: at that time (1930-ies)
no structures larger than galaxies were known. The hom-
ogeneous and isotropic distribution of galaxies was
thus a reasonable first hypothesis which at the same
time made Einstein”s equations tractable.

The models proved successful in describing several
observable properties of the Universe, like Hubble s
expansion law, the abundance of helium or the microwave
background radiation. These successes are often under-
stood as confirmations of the underlying assumptions.
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In fact, they only confirm that the Universe was much
hotter and denser in the past than it is now and that
it was very nearly isotropic at the time when the radi-
ation last interacted with massive particles. Even
within these classical models massive particles and ra-
diation are considered as two independent components of
matter which decoupled in the moment of last scattering
and later evolved independently. Whatever happened to
particles afterwards, did not affect the distribution
of radiation. Therefore, the isotropy of radiation does
not force wupon us a model in which all matter is dis-
tributed so symmetrically.

Once isotropy is given up, the requirement of hom-
Ogeneity is not compelling anymore. The Universe is
assumed homogeneous because it would be unnatural if it
were spherically symmetric only around us (5), but if
it is not spherically symmetric at all, it might be in-
homogeneous as well. This statement does not speak aga-
inst the copernician philosophy. According to it, no
place in the Universe should be preferred. This does
not mean that all the places in the Universe should be
exactly identical. The latter assumption fulfills the
former, but is much stronger (see also Ref. 6).

A purely theoretical argument also shows that more
general models of the Universe can be reconciled with
the existing data (cf Fig. 1, in Ref. 7). Only the
events lying on our past light cone are directly ob-
served, and only directions to them can be measured
with a satisfactory precision. All other data needed to
calculate the spatial distribution of matter are in-
ferred therefrom through a model-dependent procedure:
1. Through each event on the light cone we draw a world
line representing the history of that portion of
matter, e.g. a galaxy (the equations of those lines can
only be calculated given a specific class of space-
times); 2. Through the vertex of the light cone we draw
a hypersurface S of events simultaneous with "now"
(Even within a fixed model this depends on the refer-
eénce system chosen. The reference system is usually at-
tached to a physical structure in the spacetime, e.g.
the congruence of matter world-lines); 3. The points of
intersection of the world-lines with the hypersurface S
represent the positions of the galaxies now (These po-
sitions depend on the slopes of the matter world-lines,
i.e. on the velocity of expansion, given the model and
given S. This velocity can be calculated from the ob-
served redshift - provided we know precisely what part
of the redshift is of cosmological origin). 4. Only now
can we calculate the spatial distribution of matter.
Thus a model is assumed before any oObservations are
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taken into account. It can be confirmed or refuted by
these observations, but is in no way implied by them
(see also Refs 6, 8, 9).

2. GENERALIZATIONS ARE IN FACT NECESSARY.

According to present data, galaxies are grouped
into clusters and shells surrounding voids which con-
tain no visible matter at all (10). Thus the Universe
might possibly be homogeneous only. on still larger
scales (if at all). Such a large scale homogeneity cou-
pled with small scale inhomogeneity is not properly
described by a spacetime with a continuous transitive
group of symmetry (curve a in Fig. 1) of which the FLRW
spacetimes are examples. A more appropriate description
would be a spacetime with a discrete group of symmetry
in which matter density would be given by a function
like curve b in Fig. 1 (see similar remarks by Ellis
(6)). Such distribution of matter does mot distinguish
any single observer because, if the space is infinite,
there exist infinitely many identical copies of any
chosen finite portion of matter distributed regularly.
Such a solution can only be found if the assumption of
continuous homogeneity is relaxed altogether.
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Fig 1. Matter density vs position in a
3-space that 1is homogeneous with respect to
(a) a continuous group of symmetry, (b) a

discrete group of symmetry.

Moreover, the FLRW models taken literally tell wus
that no galaxies may ever have formed out of a homo-
geneous and isotropic background. All theories of ga-
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laxy formation must consider perturbations of the FLRW
models (see e.g. (11)). If we have to go beyond the
FLRW models, it is equally reasonable to consider exact
generalizations instead of approximate perturbations.

This author is in a definite minority, but not
alone with his criticism of "standard cosmology". Sim-
ilar concerns were expressed by Ellis (6, 8, 9, 12-14),
MacCallum (15) and Mashhoon (16, see also this volume).

Since the FLRW models proved so successful, the
more general new models should contain them as special
cases, i.e. as first approximations. This paper will
show how a certain generalization results if the as-
sumptions underlying the FLRW models are slightly re-
laxed. This generalization does not go sufficiently far
in order to be free from the above mentioned
weaknesses. Its existence proves however that more gen-
eral solutions can still be reasonably simple.

3. ASSUMPTIONS.

The considerations of the previous sections show
that what is checked against astronomical cbservations
is the 3-dimensional space t = now rather than the
whole spacetime. It is then a natural question, to what
extent the 3-geometries of the spaces t = const deter-
mine the 4-geometry of our spacetime. Let us assume, as
is commonly done, that:

1. Each 3-space t = const is homogeneous and iso-
tropic, .

2. The spaces are orthogonal to the family of
t-coordinate 1lines,

3. Matter moves along the t-lines,

4. The Einstein’s field equations are fulfilled,
the source being a perfect fluid,
but let us consider the possibility that:

5. The spacetime not necessarily has any symmetry.

4. THE SOLUTION.

The assumptions 1 to 5 produce the following solu-
tion of the Einstein”s equations (17):

2 2 2 2 2 2 2 2
ds =Ddt - (R/V)(dx + dy + dz ), (4.1)
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1 2 2 2
v=1+-k{lx-x) +(y-y) + (z-2) }4.3)
4 0 0 0
2 2 2
k= (c - 1/F )R, (4.4)
2
ke = 3C , (4.5)
2 ac v d vV
kp = - 3C + 2C -- - / - (=), (4.6)
dt R 9t R
0
a =0,
(4.7)
i 2 2
a = (Vv /DR )D, i=1, 2, 3.

i

where F, K, C, x , ¥y , 2 are arbitrary functions of
0 0 0
time, € is the energy density, p 1is the pressure, and a
is the acceleration field of the fluid flow.
This solution was first found by Stephani (18) in
1967, but was not investigated from the point of view
of cosmology.

5. LOCAL PROPERTIES OF THE SOLUTION.

The solution has in general no symmetry at all.
Tts most striking property is the fact that k is a
function of t, the sign of k being not determined.
Since k is the curvature index of the 3-spaces t =
const, one sees that in this spacetime some spacelike
sections have positive curvature (and soO should be
closed) while some others have negative or zerc curva-
ture (and so should be open). Other differences with
the FLRW solutions are the following:

1. Matter moves with acceleration, i.e. not on ge-
odesic lines.

2. The equation of state is not of the form € =
e (p), but depends on the position in the space: p =P
(e, X, ¥, 2).
This last property means that a single thermodynamic
function of state (e.g. pressure) does not suffice to
describe matter in this model, at least one other func-
tion is necessary, e.g. temperature which would have
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different values in different places.

The Stephani Universe reduces to a FLRW model when
any one of the following situations occurs:

1. The functions x , y , z and k are constant.

0 0 0

2. The acceleration field vanishes (i.e. matter
moves on geodesics).

3. The equation of state is of the form e = e(p),
i.e. it does not depend on position. ;

This solution is conformally flat, and moreover it
is the most general conformally flat solution with a
perfect fluid source and nonvanishing expansion (19).

6. GLOBAL PROPERTIES OF THE STEPHANI UNIVERSE.

Stephani has shown (18) that this solution can be
embedded in a flat five-dimensional space. To construct
the embedding explicitly would in general be too diffi-
cult because of the 6 arbitrary functions of time. It
was more instructive to study a special case in which
the embedding could be performed explicitly.

Such a special case results when C = const; the
Stephani Universe reduces then to the deSitter solu-
tion. It was further assumed x = y =2z =20, R =

0 0 0
const, k = -t. In the case C = const these additional

assumptions amount just to a choice of a simpler coocr-
dinate system (foliation).

The deSitter manifold is then a 4-dimensional one-
sheet hyperboloid embedded in a 5-dimensional pseudoeu-
clidean space. The metric form of the 5-space is:

2 2 2 2 2 2
ds =dz -dX -d4du - daw - 4y , (6.1)

while the equation of the deSitter hyperboloid is:

2 2 2 2 2 2
Z -X -U -W - (Y -1/C) =-1/Cc , (6.2)

Oor, in parametric form:

2 2 2 2 2 1/2
Z =R (x +y +2z) (CR + t) / 2V (6.3)

X, U, W) = (R/V) (x, vy, 2z) (6.4)

2 2 2 2
Y =CR (x +vy + 2z ) / 2V (6.5)
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t=00] (pair of

r=0J straight lines,
the light-cone
at X=Y=Z=0)~

t=—C2R?
(circle)

the "far sheet”)

Fig. 2. Projection of the deSitter manifold
onto the (Y, Z) plane. Only sectors I and IV
are covered by the parametrization (6.3) -
(6.5). See text for more remarks. (Adapted
from Ref. 20 with the permission of the Ple-
num Publishing Corporation).

The projection of the hyperboloid (6.2) onto the
(Y, Z) plane in the space (6.1) is shown in Fig. 2. On
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the figure one can see that a spacetime of a simple to-
pology can result from the foliation introduced in sec.
3. The sections t = const of the spacetime are inter-
sections of the hyperboloid (6.3) - (6.5) with the hy-
perplanes Z/Y = const. They all contain the (X, U, W)
space (the X axis in Fig. 2) and their tilt to the (X,
U, W, Y) hyperplane (the (¥, Y) plane in Fig. 2) is
2 2
determined by k(t) = -t. With -C R < t < 0 we have
k (t) > 0 and the tilt of the t = const hyperplanes is
such that their intersections with the hyperboloid
(6.2) are 3-ellipsoids (ellipses in Fig. 2) - closed
spaces of positive curvature (in the special case t =
2 2

-C R it is a 3-sphere). With t = 0 we have k = 0 and
the intersection is a 3-paraboloid (a parabola in Fig.
2) - the flat space. With t > 0 (k < 0) the intersec-
tions are two-sheet hyperboloids (hyperbolas in Fig. 2)
- open spaces of negative curvature.

Fig. 2 faithfully represents not only the topology
of the general Stephani solution, but also several de-
tails of its geometry - more than would be worth dis-
cussing in this place (see Ref. 20). Only the singular-
ity at x =y = 2z = 0 seen on Fig. 2 1looks differently
in the general case. It is then a true curvature singu-
larity, and it occurs at different values of (x, vy, 2z)
for every t. It is an additional singularity to the one
predicted by the Hawking-Penrose theorems (21) which
occurs also in the FLRW models. The additional singu-
larity can be avoided when the functions k(t) and R(t)
and their derivatives obey certain inequalities (20).
If k(t) > 0 for all t, then the inequalities can be re-
adily fulfilled. Otherwise, they imply that pressure
must be negative somewhere. This, in turn, can only be
avoided by matching the Stephani Universe to an empty
space solution. In any case, however, the weak energy
conditions of Hawking and Ellis (21), € > 0 and € + p
> 0, can be fulfilled. B

7. IN WHAT SENSE IS THIS UNIVERSE HOMOGENEOUS?

The pressure and acceleration scalar do depend
here on spatial coordinates. On the other hand, we as-
sumed in sec. 3 that all the 3-~spaces t = const should
be intrinsically homogeneous. Is this a contradiction?

No - because pressure and acceleration are not in-
trinsic properties of these 3-spaces. They are fields
defined on the 4-dimensional spacetime (oxr on
4-dimensional subsets thereof). As such, they have well

Pt A o A A R0+ O [

—t

~ A va A



1d

o

Ld

1—
is
n
L1

A GENERALIZATION OF THE LEMAITRE MODELS 71

defined values over the spaces t = const. These values,
however, can never be calculated if we are given only
the geometry of a single 3-space t = const - they are
determined by the whole 4-dimensional metric tensor
through the Einstein”s field equations. The theory of
relativity is telling us here, in its own language, the
message known from statistical physics: it is impossi-
ble to determine pressure (in any kind of matter) by an
instantaneous measurement. The measurement must always
take a finite time (the pressure must be defined over a
continuous family of t = const spaces), and only after-
wards can we determine momentary values of pressure -
as limits at At =-> 0 of mean values over time-inter-
vals At. This fits with the microscopic definition of
pressure - as the mean momentum transferred by the gas
particles to a unit surface in a unit of time.

Let us consider a more general spacetime in which
the 3-spaces t = const are orthogonal to the t-lines,
but have arbitrary intrinsic geometries:

2 2 2 i
Ddt - h dx dx , (7.1)
ij

ds

where i, j = 1, 2, 3 and all the functions (D, h ) are

i]
arbitrary. Let us assume this metric fulfills the Ein-
stein”s field equations with a perfect fluid source
whose velocity field is tangent +to the t-lines. The
density of matter can then be calculated to be

ij 2 ij 2
Kge = R(h)/2 + {(h h ’ ) + h 7 h r }/8D (7-2)
ij t t ij t
where R(h) is the 3-dimensional scalar curvature of the
metric h . Eg. (7.2) shows that also matter density
i3
need not be spatially homogeneous when h is. It
ij

happens to be so for the Stephani Universe by accident
(and for the Bianchi type models by assumption).

8. IS THE STEPHANI MODEL COMPATIBLE WITH OBSERVATIONS?

Since the FLRW models are contained in this one as
special cases, and are themselves believed to be good
models of the observed Universe, the answer to the
question asked above is immediate: ves, the functions
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k (t), x (t), v (t) and z (t) can always be chosen to
0 0 0

vary so slowly that no observation can distinguish them
from constants to which they reduce in the FLRW limit.
This statement raises a further question: what are the
limits imposed by observations on the derivatives of
these functions? This will be a subject of a separate
study. An ultimate question is however: can the Stepha-
ni model describe anything that the FLRW models could
not? The calculations in it are undoubtedly more in-
volved, so does it pay off to use it?

To the author, it was interesting to learn that
the classification of cosmological models into the
open, the flat and the closed one is not required by
Einstein”s theory itself, but is an artifact of the
very strong symmetry requirements imposed on the FLRW
models a priori. The Stephani model had thus at least
this conceptual advantage. Whether it has any others,
remains to be seen. Further generalizations are needed
in any case, since, with spatially homogenecous
matter-density, the model cannot serve to describe the
galaxy formation in a nonperturbative manner.
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