Volume 17, Number 3&4 August & November 1983 (Issue Number 67&68)

From the Chair
Treasurer’s Report
Obituary: Carl Engelman

ANNOUNCEMENTS

NYU Computer Algebra Conference

3rd MACSYMA Conference

ICME 5 Session on Symbolic Mathematical Systems
EUROCAL "85 Conference

"Prolog” to EUROCAL 85

CONTRIBUTIONS

A. Krasinski

ORTOCARTAN - A Program for Algebraic Calculations
in General relativity

M. E. Stickel

A Note on Leftmost-innermost Term Reduction

F. Winkler & B. Buchberger

A Criterion for Eliminating Unnecessary Reductions in
the Knuth-Bendix Algorithm (ABSTRACT)

P. Smith & L. Sterling

Of Integration by Man and Machine

M. Wester & S. Steinberg

An Extension to MACSYMA’s Concept of Functional
Differentiation

B. Char, K. Geddes, & G. Gonnet

The MAPLE Symbolic Computation System

S. S. Abi-Ezzi

Clarification to the Symbolic Mode in REDUCE

G. Gonnet, B. Char, & K. O. Geddes

Solution of a General System of Equations (PROBLEM)

SIGSAM Membership List (January 1984)

ORTOCARTAN - A PROGRAM FOR ALGEBRAIC CALCULATIONS IN GENERAL RELATIVITY

Andrzej Krasinski
N. Copernicus Astronomical Center
Polish Academy of Sciences

Bartycka 18,

1. Why was this program created and
what is it good for?

The supply of computer programs for
algebraic calculation seems at present

sufficient to satisfy the needs of any po-
tential wuser (1). It would thus seem na-
tural for a future user to ask for a copy
of one of the existing programs. However,
it turns out to be quite difficult in
practice. Some algebraic systems are not
distributed at all (MACSYMA (2) was until
recently an example). Some others (e.g.
SHEEP (3, 4)) exist only for definite
types of computers, and adapting such a
program to another computer is, for an
inexperienced programmer, a task compar-
able in difficulty to writing a program
from scratch. Several specialized programs
will not be suited to the particular ap-
plication intended. Finally, establishing
a local group of experts in algebraic pro-
gramming in a place where this activity
was not represented before is an obvious
(*)
the users. Therefore we
to write our own program.
The program calculates the Riemann,
Ricci, Einstein and Weyl tensors from a

convenience for
decided in 1977

The author .is at present alone respon-
sible for the maintenance and distribution
of ORTOCARTAN. However, the program was
created by an informal team whose othex
members have shares at least equal to the
author”™s share in the final outcome. The
team included M. Wardecki (we adapted his
simplifying subprogram written for another
nurpose), M. Perkowski (he wrote the first
complete code of the program and helped
the author to learn LISP) and Z. Otwinows-
ki (his brilliant ideas resulted in reduc-
ing the execution time by the factor 5).

12

00 716 Warszawa, Poland

given metric tensor using

an ORThOnormal
set of CARTAN forms. This calculation is
performed in the theory of relativity in

order to find the left-hand side of the
Einstein”s field equations. It consists of
repeated application of differentiations,
multiplications and additions to polynomi-
als of gradually increasing complexity,
and of inverting a single 4%x4 matrix with
algebraic elements (5). The terms of the
polynomials may in general contain any
functional expressions, including arbitra-
ry functions. This is why every algebraic
program for wuse in the relativity theory
must contain very general and efficient
subroutines for algebraic simplification
and difrerentiation. If they are good
enough for this calculation, they will be
useful for many other applications. ORTO-
CARTAN could thus be relatively easily ex-
tended for other specialized programs. The
extensions, apart from the program for in-
verting matrices of arbitrary rank, did
not reguire much ingenuity in programming,
so they will not be discussed here (see
(6)). This article will describe the com-
puter science aspects of ORTOCARTAN. For a
review oriented towards users see (5) and
the user”s manual (7). A detailed refer-
ence manual describing all the functions
in the program is also available (8).

2. The language.

ORTOCARTAN is written in LISP. Recur-
sion, the characteristic feature of LISP,
is used in the program in an essential way
in several places (e.g. in simplification,
substitutions, differentiations, matrix
operations and printing). It would thus be
very difficult if possible at all to im-
plement the same algorithm in another pro-
cramming language. The program is avail-
able in four different machine implementa-
tions of LISP: 1. The Cambridge LISP for

IBM computers (9); 2. The University of
Texas LISP 4.1 for CDC computers (10); 3.
The SLISP/360 for IBM computers (11); 4. A
version for UNIVAC computers (12). The au-

thor was himself involved in the first
three versions only. The program was ori-
ginally written in U.T. LISP. In order to
rewrite it into the Cambridge LISP, it was

necessary to DEFINE 12 additional simple
functions to make up for a few system
functions of U.T. LISP and to redefine or
rename 7 others which expected a different
format of their arguments or had different
names. More problems were caused by un-
clear error messages and discrepancies
between the reference manual and the actu-
al working of SLISP/360. Difficulties re-
sulted also from different "philosophies”
of the various implementations. For in-
stance, in U.T. LISP the PROG- and global
variables practically do not differ in any
way, while Cambridge LISP and SLISP/360
make a distinction between GLOBAL, FLUID
and LOCAL bindings. Also, the very differ-

ent treatment of vectors and arrays in
U.T. LISP and in Cambridge LISP was a
source of some trouble. 1In the end,
however, it seems to be a better policy to

risk facing problems of this kind by tak-
ing the advantages of each implementation
to the extreme than to avoid problems with
portability by sticking to the "Standard
LISPp" (13). The "Standard LISP" is rather
simple and obeying its rules would force
the programmer to give up many useful con-
veniences available in U.T. LISP. Besides,
this "Standard" is so far only a proposal
which was not exactly followed in any im-—
plementation (even in SLISP/360 in spite
of the manual”s title (11)), so obeying it
does not guarantee portability either.

3. Types of variables.

There are 5 types of atomic variables
in ORTOCARTAN:

1. Constants.

2. Coordinates (the independent vari-

ables for differentiation).

3. Arbitrary functions.

4. Symbols for explicitly defined
pressions (to be used as abbreviations in
all operations except differentiation
which acts on the expressions themselves).

5. Elementary functions: times, plus,
expt, minus, exp, log (to base e), cos,
sin, tan, cot, cosh, sinh, tanh, arctan,
arcsin, arcsinh, arccosh, arctanh, der
(the derivative) and int (the indefinite
integral which cannot be calculated, but
can be differentiated).

The first four types are declared by
the wuser. The elementary functions are
stored in the program and must not be de-
clared. Each atomic variable is assigned a
priority, i.e. a number which is stored in
its property list with the indicator
PRIOR. Numbers have higher priorities than

ex-—

variables, 1lists (which represent func-
tional expressions) have lower priorities
than atoms. Of two 1lists, the one has

higher priority whose CAR has higher pri-
ority. If both CARs have equal priorities,
the CDRs are compared in the same way. Two

objects can have the same priority only if

they are identical.
of expressions

In this way, each list
(atoms or lists) can be un-
iguely ordered according to descending
priorities. Such ordering is performed in
sums and products, and this simplifies

153

further operations on them.
Each function is declared by the
together

user
with the list of its arguments.

The arguments can be themselves the names
of other functions or of symbols. Such
composite functions (functions of func-
tions of functions...) are allowed to any

arbitrary depth and will be correctly dif-
ferentiated. During the calculation, each
function has its arguments stored in the
property 1list with the indicator DEPS.
Similarly, each symbol has the expression
it represents stored in the property list
with the indicator CONTENT.
4. Internal representation of
and algebraic expressions.
Rational numbers are represented in the
program as dotted pairs, (1 2) meaning
1/2 (in user s data the dot is omitted,
i.e. the numbers are two-element lists).
Floating-point numbers are not allowed be-
cause non-rational numbers must be dealt
with precisely. The program can simplify
and multiply rational numbers and simplify
their rational powers. The following prin-
ciples are used in simplifying fractional
powers: 1. Make the exponent positive by

numbers

: p
the identity a = (1/a) ; 2. Change the
exponentiated number to an integer by the
p/q P a-1 p/q
identity (m/n) =n (mn) ; 3.
Change the exponentiated integer so that
the numerator of the exponent equals 1 by
p/a p 1/q
the identity n = (n) ; 4. Try to
make the denominator of the exponent as
small as possible by detecting simplifi-
1/4 1/2
cations like 9 =3
would

The program
not perform more sophisticated ope-
1/2 1/2 1/2

rations like e.g. 2 -6 = 2.3 This
did not cause any trouble so far, and the
program SHEEP does very well even without
as much arithmetics as ORTOCARTAN has
(14). The user can always use substitu-
tions to smooth out such failures.

Algebraic expressions are represented
in the prefix notation, (PLUS A B), (TIMES
A B) and (EXPT A B) representing A+B, A.B

B

and A , respectively. Formally, nonration-
al numbers are algebraic expressions.

5. The algorithm for algebraic simplif-
ication and substitutions.

The goal of simplification cannot be
uniquely defined for a completely arbitra-
ry expression (15). However, a program
will work reasonably well if, in addition
to a fixed set of rules, it will obey the
ad hoc commands of the user. ORTOCARTAN
follows the following rules:

1. Each sum or product is ordered in a
unigue way as described in sec. 3.

2. Exponentiations of sums are expanded
if the exponent does not exceed 3 (the
user can change this limit or suppress ex-
ponentiation altogether).

3. Products which contain sums as fac-
tors are fully expanded with use of the
distributivity rule (in accord with rule
2; the wuser can avoid it by defining an
atomic symbol to represent any given sum).

Other rules, 1liké€ summing up exponents
in products, are quite obvious.

To each algebraic operation there ex-
ists in ORTOCARTAN a specialized simplify-
ing function which operates only on the
top 1level of the expression and makes the
assumption that

(A) All the sub-expressions were already
‘simplified before.

For instance, the function SPLUS will
sum up numerical coefficients of terms in
a sum, deleting a: term. if its: coefficients
sum up to zero, but will not. analyse the
terms themselves, even if they contain
sums on deeper. levels. The function STIMES
will sum up the exponents of factors in a
product, will expand the product if some
terms are sums (calling SPLUS to simplify
the result), but will not analyse the fac-
tors. There are 6 specialized functions,
with self-explanatory names: SMINUS,
SPLUS, SLOG, STIMES, SEXPT and SEXP.

A thorough simplification on all levels
is done by the function SIMPLIFY which is
recursive. It goes into its first argument
(the expression to be simplified) until it

encounters a list whose all elements are
atoms or numbers. On that level, it recog-
nizes by the first element of the 1list

whiich. specialized simplifying function is
to be called and calls it. It goes then
back. to the previous level, having thus
guaranteed that the deeper level was alre-
ady simplified, and so on until the top
level. Such recursive simplification must
be performed only once, on the user’s
input data. Later, the assumption (A) is
guaranteed to be fulfilled. The function
SIMPLIFY can operate in two modes:
"hard" mode in which it modifies the ex-
pression, and in the "soft" mode in which
it produces a simplified copy of the ori-
ginal expression. The mode is fixed by the
second argument which is T or NIL.

In U.T. LISP the function SUBST is ava-
ilable which replaces every occurrence of
its second argument S2 in the third argu-
ment S3 by the first argument S1. However,
SUBST copies S3 on every call, so many
calls £ill the core with a great number of

list structures. Moreover, it replaces
every S2 by always the same copy of S1, so
that only the soft mode of the function
SIMPLIFY could be wused, ¥resulting in
further losses of core. We designed our
own function SUBSTITUTE which copies S3

only when S2 is actually found in it, and
does so only upwards from the levels on
which S2 was found. At the same time, it
replaces every occurrence of S2 by a dif-
ferent copy of S1, so the simplifying
functions can safely modify the resulting
structure. Each actual replacement is fol-
lowed by the recursive algebraic simplifi-
cation, also only upwards from the levels
on which the replacement occurred. The

in the

14

last point iis; important: one performs sub-
stitutions Just in order to cause addi-
tional simplifications, so simplification
should not wait wuntil all substitutions
are finished. Again, however, SHEEP is
doing well ignoring this principle (14).
The substitutions are literal, with
pattern-matching. They can
though, a part of a sum or of a product
(not necessarily the whole sum or pro-
duct) . How they are coded in the data and

no
replace,

then stored and processed in the program
will not beé described here, since we would
have to go into too much detail of the

Einstein”s field equations, but see (7-8).
With the simplifying subprogram given,
differentiation is quite easy to design.

6. The
trices.

The single matrix which is inverted in
every run of ORTOCARTAN. is always of rank
four, so its. determinant could: be calcu-
lated by the Laplace algorithm in a rea-
sonable time. However, we wanted to make
this subprogram directly accessible to the
users. It was necessary then to use a fas-
ter algorithm, applicable also in higher
dimensions. (For a matrix of rank n, the
Laplace algorithm requires n! sub-deter-
minants to be calculated. It is definitely
too much already with n = 8).

We used the algorithm which first makes
the matrix triangular. It requires roughly

3

n /3 multiplications and additions to be
performed on the elements of the matrix,
and the determinant is then equal to the
product of the n elements on the main di-
agonal. This is still realistic with n <
40, provided the elements do not become
long sums in the process (with a complete-

algorithm for inverting: ma-

ly general symbolic matrix, the determi-
nant is a sum of n! terms, so this algor-
ithm is no better).

The calculation proceeds as follows.

The element M11 of the matrix M is picked
out. If it is zero, the program goes along
the first column of the matrix until it
finds the first nonzero element. If no
such element is found, the determinant ob-
viously equals zero. If such an element is
found, say it is Mk1, then the rows 1 and
k are interchanged, Mk1 playing now the
role of M11, and the sign of the result
will be later reversed. Suppose then M11 #
0. In this case, the first column is sur-
veyed for other nonzero elements. If there
are none, the determinant equals M11 times
the sub-determinant (M<j), 2 = 2,...., n;
Jj = 2, n; of rank n-1. The subdeter-
minant is calculated recursively by the

e e e p

same method. If another nonzero element,
Mk1, is found in the first column in the
row k, then each element Mkl in the k-th

row is replaced by (Mkl - Mk1-M11/M11),
Mk1 being thus replaced by zero. This pro-
cedure, which does not change the value of
the determinant, is repeated until M11 re-
mains as the only nonzero element in the
first column. The sub-determinant of rank

n-1 is then to be calculated. The calcula-
tion 1is repeated recursively until the
rank goes down to 1.

There is a pitfall in this algorithm.
Since the simplifying procedure automati-
cally expands products involving sums, it
would find (A+B){1-B/(A+B)} to equal {A+B

2

-AB/ (A+B)-B /(A+B)} and would not recog-
nize that this equals simply A. Therefore
a precaution must be taken for the case
when M11 1is a sum. In that case, M11 is
replaced by an atomic symbol G11 generated
in the program. Only after the whole de-
terminant is calculated, the corresponding
sums are substituted back for the symbols
in a reversed order. The order must be re-
versed, since the later replaced sums con-
tain the earlier generated atoms in their
terms. In this way, negative powers of
each symbol are cancelled before the sym-
bol 1is replaced by the appropriate sum.
The generation of the atomic symbols and
the two-way substitutions are performed
automatically and in full conspiracy so
that the user does not notice them.

It would be logical now to invert the
triangular matrix and use the result to
reconstruct the desired inverse matrix.
Unfortunately, this reconstruction relies
on factorization of polynomials. The poly-
nomials are quite simple and guaranteed to
factorize, but our simplifying procedure
cannot factorize at all and would have to
be extended. It seemed more economical to
invert the matrices by the o0ld rule "minor
divided by determinant".

The algortihm for calculating determi-
nants could be further improved. It may
happen that some other column than the
first one has the most ceros. If it is in-
terchanged with the first column, the
"triangularization"” of the matrix is done
faster. Imspired by an optimistic report
(16) the author generalized the algorithm
to include this trick. The new algorithm
worked faster indeed, but failed on a cu-
rious 9%x9 matrix. The matrix contained two
columns with 7 =zeros each, while every
other column contained less zeros. Both of
these 7-zero columns seemed equally good
to start with. However, if the "triangu-
larization" was started at the first of
them, most other zeros in the matrix were
killed and even a long time limit was not
sufficient to complete the calculation. If
it was started at the second 7-zero co-
lumn, many zeros were preserved and the
calculation succeeded in 710 seconds (the
SLISP/360 version). The algorithm could
not recognize the best one among columns
with equal numbers of zeros, and started
the work always at the leftmost of them.
It succeeded only after the columns were
interchanged "by hand".

The matrix is available from the au-
thor. The problem arose in research on ga-
laxy formation (17).

7. Input format and prints.

The user writes his data in a format
which reminds that of FORTRAN: multiplica-
tions are denoted by asterisks (which must
not be omitted), exponentiations by double
asterisks. These data are translated into
the LISP prefix format by a simple subpro-
gram. The results are printed in the nor-
mal mathematical format, with exponents
above the main line and subscripts below
it. The program for printing is able to
print formulae in which exponents carry
their own exponents or subscripts. It is
guaranteed to work correctly only if the
expressions to be printed are of the for-
mat produced by the function SIMPLIFY. For
instance, (TIMES (EXPT A 2) (EXPT B 2))

2 2
will be printed correctly, as A B . How-
ever, (EXPT (TIMES A B) 2) which is the
same expression, but not SIMPLIFYied,
2
would appear in print as TIMES (A, B).

The printing program analyses the form
of the expression to be printed and de-
cides in which line to place each atom en-
countered. The atom becomes the first ele-
ment of a dotted pair. Its second element
is - the number of the column in which the
first character of the atom should be
placed. The dotted pair is inserted into
the appropriate list, each 1list corres-
ponding to one line of print: the line for
subscripts, the main line, the first line
of superscripts, the second line of super-
scripts, and so on. The program keeps
track of the first free column and com-
pares it with the beginning of the right
margin (adjustable by the user, default
133). If the next atom would not fit into
the space left, a special break-sign is
inserted into all the lines which causes
carriage return during printing, and the
column counter is reset to 4.

This is a pure LISP program, it uses no
printer-driving commands apart from the
functions PRINT, PRIN1, TERPRI and OTAR.

8. Core-saving methods.

Drawing from other programmers” experi-
ence we have put a strong emphasis on
using as little core as possible. On the
other hand, we did not want to achieve
this at the cost of users”™ convenience or
of abilities of the program. This led us
to several ideas. Those which resulted in
the greatest savings are described below.

The objects calculated in the relativi-
ty theory carry two to four indices, each
ranging from 1 to 4 or from 0 to 3. To
calculate all the components of such an
object, all possible sets of its indices
must be referenced. In the beginning, we
generated the values of the indices by a
function similar to the ALGOL statement
FOR i=<1> STEP <s> UNTIL <u> DO <function>
and formed sets of indices by executing
LIST on two, three or four arguments. This
resulted in choking both the full word
space (with numbers) and the free space
(with 1lists). Since however the indices

run always through the same four values,
they need not be generated. One can define
the global variable LIND by (SETQ LIND
(QUOTE (0 1 2 3))) and call (MAPC LIND
(FUNCTION (LAMBDA (I) <function-body>)))
instead of calling DO. Similarly, instead
of generating always new lists of indices,
one can define three global variables with

the initial values LIJ = (NIL NIL), LIJK =
(NIL NIL NIL) and LIJKL = (NIL NIL NIL
NIL). These are working lists of indices.

Their elements can be manipulated through
the function RPLACA. In this way one uses
the same 4-element list 256 times instead
of generating it 256 times anew. Although
this method made the code of the program
longer by about 10%, it reduced the execu-
tion time by the factor 2 and the garbage
collections by more than 10 times.

In U.T. LISP it is easy to handle files

and overlays. We wused this facility to
further reduce the core-requirements. The
program was divided into 3 parts. Part 1

contains the printing program and forms a
separate overlay. Part 2 contains the pro-
grams for algebraic simplification and
differentiation which are needed during
the whole calculation, and also forms a
separate overlay. Parts 1 and 2 can (and
should) be compiled. Part 3 contains
LISP-definitions of all the other func-
tions (input analysis, inverting matrices,
the Einstein”s equations, etc.). The func-
tions from part 3 are used only during
brief definite periods of the calculation.
The overlay with part 2 is first loaded
into core, and the definitions from part 3
are read until the program is able to do
its first job (translate the user” s input
into the LISP notation for instance). The
job is then done, and che functions which
did it will not be useful anymore. Their
definitions are then erased, by (REMPROP
(QUOTE <the function-name>) (QUOTE EXPR)).
Further definitions are read only when
they are first needed. 1In this way the
program gradually learns while it works,
and at the same time gradually destroys
itself. At any moment, at most half of the
code actually resides in core. This has
one small disadvantage: the program may be
called only once in each machine-job.

The results of the calculation are not
immediately printed, but stored on the
file PRINTS in their unreadable LISP-for-

mat until part 2 is ready with its work.
The overlay with part 1 (the printing pro-

gram) is then loaded into core and
overwrites part 2. The file PRINTS which
was an output file for part 2 becomes the

input file for part 1, and the results are
now neatly printed on the standard output.

U.T. LISP has also a very convenient
virtual-memory facility which allows for
further savings of core. Unfortunately, we
could not use it because our copy of LISP
4.1 contained a bug. The idea is as fol-
lows. During the calculation, ORTOCARTAN
creates several arrays whose elements are
large expressions. The arrays are stored
in core till the end of the <calculation.

16

However, only a few components of them may
be needed simultaneously at a time (at
most five), while there are more than 400
of them altogether. The expressions could
be thus stored on a random-access disk
file while only their disk-addresses would
be kept in core. Frequent referencing the
virtual memory would make the calculation
a little slower, but 5 expressions could
use the space occupied before by 400.

9. Actual and possible applications of
ORTOCARTAN.
So far ORTOCARTAN was applied to prob-

lems in the gravitation theory, mostly by
the author himself. It was used to inves-
tigate a generalized cosmological model
(18) and symmetry properties of the curva-
ture tensor (19). At the University of
Cologne it was applied to smaller problems
in a generalized theory of gravitation,
the Poincare gauge field theory (20). It
was also used by several colleagues of the
author to various small calculations.

It is not likely that ORTOCARTAN would
appear well suited to problems outside the
gravitation theory. For instance, it can-
not calculate any integrals what is neces-
sary in perturbative calculations of guan-
tum electrodynamics. However, it could be
extended for other specialized procedures
and other general abilities at a moderate
effort. These are for example: processing
complex numbers and functions, processing
truncated power series, substitutions by
pattern-matching, the possibility to write
programs in ORTOCARTAN without resorting
to LISP. These extensions would enlarge
the area of application in the gravitation
theory, but so far there was no pressure
in this direction from the users.

There are no plans to include calculat-

ing indefinite integrals and simplifying
rational functions. These would require
more concentrated efforts and it is not

likely that anything useful could be pro-
duced 1in the half-amateur spare time mode
we worked so far.

10. Existing implementations, availa-
bility and documentation.

ORTOCARTAN is available at the follow-
ing sites:

1. The Cambridge LISP version: on an
IBM computer at the University of Cam-
bridge (England) and on IBM-compatible Am-
dahl and Siemeéns computers at the

Max-Planck-Institute of Physics and Astro-
physics in Garching/Munich (W. Germany) .

2. The U.T. LISP version: on CDC Cyber
computers in regional computer centers in
Warsaw and Cracow (Poland) and at the Un-
iversity of Cologne (W. Germany).

3. The SLISP/360 version: on a
4004 (IBM-incompatible) computer
University in Konstanz (W. Germany) .

4. The UNIVAC version: at the Universi-
ty in Istanbul (Turkey).

The program is at present in active use
only in Warsaw and in Cologne, and only
the author can promise to respond to re-

Siemens
at the

quests from interested wusers.
tape records of the first three
are available from the author.
Also available is the user”s manual (7)
which contains sample prints from simple
tests and is intended for those who do not
know LISP and do not wish to learn it, but
are familiar with Einstein’s relativity

Magnetic
‘versions

theory. The manual refers only to version
1. New edition which will describe the
later extensions of the program and its

other computer implementations is at pre-

sent being prepared in Cologne. It will be
stored on a magnetic tape. A detailed
reference manual of ORTOCARTAN (8) des-

cribes the working of all the functions in
the program. An updated version thereof is
being prepared in Cracow, and is also to
be stored on a magnetic tape.

11. Comparison with other programs.

Comparisons between various programs
for algebraic calculations are not really
objective, even in the points concerning
measurable quantities 1like the time re-
quired to perform a standard calculation
or the core memory needed for this. For
instance, the four versions of ORTOCARTAN
follow, of course, the same algorithm. In
spite of that, the times taken to perform
the same calculation are, respectively, in
the ratios 1:15:30:180. The differences
result from the different efficiencies of

Cambridge
piler,
the compiled form and without the overlay-

corresponding LISP implementations.
LISP has a readily usable com-
so the version 1 was always run in

TABLE: Times taken and
by 6 different algebraic programs to

handling described in section 8. 1In U.T.
LISP compilation i1s not straightforward
(e.g. large function definitions must be
split into small parts (9)), and with our
difficult conditions of access to the com-
puter in Warsaw we preferred not to at-
tempt it. Instead, Z. Otwinowski rewrote
the definitions of a few most frequently
called functions into the CDC assembler
code, optimizing them by-hand. For these
individual functions, the gain in speed
was by a factor of up to 100, in the whole
program this factor was between 5 and 10.
Such partly assembled version was used for
the comparison below. In SLISP/360 the
compilation should theoretically be as
easy as it is in Cambridge LISP. However,
difficulties are encountered of which the
manual (11) does not warn. After many ex-
periments, only 1/6 of the body of ORTO-
CARTAN was found to be compilable. The
version 4 was not compiled at all.

A comparison is further complicated by
the fact that the data taken from litera-
ture come from different times, and one is
comparing the most recent version of his
own program with older versions of other
programs. The subjective impressions of
users as to which programs are easier to
learn and apply, although very important,
cannot be compared as there is no user who
would have the same amount of experience
with a number of different programs.

Unreliable as they are, comparisons
must be made. The table below compares
versions 1 and 2 of ORTOCARTAN (data from
1982 and 1979) to programs written in five

core-memory used
calculate the Einstein s tensor

in U.T. LISP

! ! ! !
! Language ! Time (sec.) ! Core !
! or program ! ! !
! ! ! ! ! !
! ! Problem 1 ! Problem 2 ! Problem 1 ! Problem 2 !
! ! ! ! ! !
! ! ! ! ! !
! LAM (24) ! 104 ! 210 ! 400 kbytes ! X !
! ! ! ! ! !
! ALTRAN (25) ! 255 ! 691 ! 350 kbytes ! X !
! ! ! ! ! !
! FORMAC (26) ! 162 ! 321 ! 300 kbytes ! b4 !
! ! ! ! ! !
! REDUCE (27) ! 234 ! 856 ! 500 kbytes ! bq !
! ! ! ! ! !
! SYMBAL (28) ! 35 ! 47 ! 33 000 words ! b4 !
i ! ! ! (*) ! (*) !
! ORTOCARTAN ! 35 ! 98 ! 800 kbytes ! 800 kbytes !
! in Cambridge LISP! ! ! ! !
! ! ! ! ! !
! ORTOCARTAN i 536 ! 1104 ! ca 53 000 words! ca 53 000 words
! ! ! !

! ! ! !

x - data missing

(*) This large memory requirement must have resulted from the

propriate handling of the

author”s inap-

Amdahl/Siemens computers in Garching. ORTOCARTAN

processed tests of similar complexity on the IBM in Cambridge at 300 kbytes.

17

general-purpose languages £or algebraic
calculation. The data on these other pro-
grams come from a fairly objective compar-
ison made by I. Cohen, O. Leringe and Y.
Sunablad in 1976 (21). The authors coded
the same algorithm in each of the
languages, and ran each program on the
same tests. The table favors ORTOCARTAN
because the latter was not written in a
higher-level language for algebraic pro-
gramming, but in LISP on which some of the
other languages are based.

Two calculations were chosen for the
comparison. In the problem 1 (22) the pro-
grams just calculate the Einstein tensor

for 'a reasonably complicated metric ten-
sor. In problem 2 (23),-they calculate the
Einstein tensor wup to linear terms in a

small parameter for another metric tensor.
Problem 2 thus tests a program’ s ability
to handle user-generated substitutions.
Unfortunately, no data were available
on SHEEP (3, 4) which is a more advanced
program of similar type as ORTOCARTAN and
has been used by a larger number of users,
all of which gave it enthusiastic opin-
ions. SHEEP is interactive what is its
strong advantage. ORTOCARTAN was not made
interactive because the terms of access to

the CDC computer in Warsaw do not allow
for reasonable work in the interactive
mode. Working in the batch mode with a

short turnaround time is not a great obs-
tacle, however.

ACKNOWLEDGMENTS. The author wishes to
thank J. Richer and A. Norman for imple-
menting ORTOCARTAN in Cambridge LISP and
kindly supplying him with the product, and
F. Hehl and M. Kwadniewski for their coo-
peration in wupdating the documeatation.
Sincere thanks go to M. Perkowski without
whose colaboration the program would never
have been written, and to Z. Otwinowski
for a lot of good suggestions how to im-
prove the algorithms. This work has been
partly supported by the Alexander von Hum-

boldt Foundation and by Deutsche For-
schungsgemeinschaft.
REFERENCES

(1) v. P. Gerdt, 0. V. Tarasov and D. V.
Shirkov, Sov. Phys. Uspekhi 23, 59
(1980) (Russian version 130, 113
(1980)) . -

(2) A. Bers, J. L. Kulp and C. F. F. Kar-
ney, Computer Phys. Commun. 12, 8
(1976) . -

(3) I. Frick, The computer algebra system

SHEEP, what it can and cannot do in
general relativity. University of
Stockholm report 77-14 (1977).

(4) I. Frick, SHEEP user s guide. Univer-
sity of Stockholm report 77-15
(1977).

(5) A. Krasimski and M. Perkowski, Gen.
Rel. Grav. 13, 67 (1981).

(6) A. Krasimski, in: 10th International
Conference on General Relativity and
Gravitation, Padova 1983, p. 433.

(7) A. Krasimski and M. Perkowski, The

138

(8)

(9)

(10)

(11)

(12)
(13)

(14)
(15)

(16)
(17)
(18)

(21;

(22)

(23)
(24)
(25)

(26)

(27)

(28)

system ORTOCARTAN - wuser s manual.
Report of the N. Copernicus Astronom-
ical Center (1980).
A. Krasinski, M. Perkowski and 2.
Otwinowski, The system ORTOCARTAN for
analytic calculations, detailed des-
cription. Report of the N. Copernicus
Astronomical Center (1979).

Cambridge LISP reference manual (dis-

tributed on tape by A. Norman, Cam-
bridge).

E. M. Greenawalt, J. Slocum and R. A.
Amsler, U.T. LISP reference manual.

University of Texas at Austin 1975
(distributed on tape).

J. Fitch, Manual for Standard LISP on
IBM system 360 and 370. University of
Utah, Salt Lake City 1978 (distribut-
ed on tape).

G. Ugoluk, private communication.

J. B. Marti, A. C. Hearn, M. L. Griss

and C. Griss, Standard LISP report.
University of Utah, Salt Lake City
1978 (distributed on tape).

I. Frick, private communication.

M. Genesereth, in: Symbolic and alge-
braic manipulation. Proceedings of
EUROSAM ~79. Edited by E. W. Ng. Lec-
ture Notes in Computer Science no 72,
Springer Verlag, Berlin-Heidelberg
1979, p. 23.

J. Smit, page 74 in Ref. 15.

M. Corona, private communication.

A. Krasinski, Gen. Rel. Grav. 13,
1021 (1981).

A. Krasinski, page 290 in Ref. 6.

P. Baekler and F. Hehl, 1in: Gauge
theory and gravitation. Lecture Notes
in Physics vol. 176 p. 1. Springer
Verlag, Berlin - Heidelberg 1983.

I. Coher, 0. Leringe and Y. Sundblad,
Gen. Rel. Grav. 7, 269 (1976).

H. Bondi, M. van den Burg and A.
Metzner, Proc. Roy. Soc. A269, 21
(1962).

H. Levy, Proc. Cambridge Phil. Soc.
64, 1081 (1968).

R. A. d Inverno, Comput. J. 12, 124
(1969).

A. D. Hall, Commun. ACM 14, 517
(1971) .

C. Fike, PL/1 for scientific pro-
grammers. Prentice Hall, Englewood
Cliffs, N.J. 1970, chap. 12.

A. C. Hearn, REDUCE2 user s manual.
Salt Lake City, Utah 1979.

M. E. Engeli, Ad. Inf. Sys. Sci. 1,

117 (1969).

