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1. Why should irregular cosmological models be considered
at alle

The foundation of the present-day theoretical cosmology are
the well known Friedman - Lemaitre - Robertson - Walker (FLRW)
-solutions of the Einstein”s field equations‘(T - 4). They were
derived from the Einstein”s theory under the very strong as-
sumﬁtions that the spacetime 1is homogeneous and isotropic.
These assumptions were not meant to reflect our knowledge about
the Universe, but rather our ignorance: at that time (1930-ies)
no structures larger than galaxies were known. The homogeneous
and isotropic distribution of galaxies was thus a reasonable
first hypothesis which at the same time made the Einstein”s
equations tractable. '

The models proved very successful in describing several ob-
servable properties of the Universe, like the Hubble s expan-
sion law (5), the abundance of helium (6) or the microwave
background radiation (7 - 8). These successes are often under-—
stood as the confirmation of the assumptions underlying the
FLRWV models. 1In fact, they only confirm that the Unlverse was
much hotter and denser in the past than it is now and that it
was very mnearly isotropic at the time when the radiation last
interacted with massive particles. Even within these classical
models massive particles and radiation are considered as two

independent components of matter which decoupled in the moment
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of last scattering (about 5 10 vyears after the "Big Bang" (9))
and later evolved independently. Whatever happened to particles
afterwards, did not affect the distribution of radiation.
Therefore, even the homogeneity and isotropy of the Tadiation

do not force upon us a model in which all matter is distributed

S6  symmetrically. Both observations and theoretical considera-
tions show that there is enough room for more general -cosmolog-
ical models to be accomodated in the existing observatlonal
data. Let us consider observatlons first.
The Hubble parameter was originally estimated to be about
500 km/sec.Mpc (10). Subsequently, this estimate was changed
several tlmes, mostly downwards (today this value is believed
to lie between 50 and 100 km/sec.Mpc (11)). The reason of these
revisions was nearly always the same: new discoveries (of in-.
tervening intergalactic matter, evolutionary effects, etc;)
- were showing that the distances to other galaxies were calcu-
lated. lncorrectly These distances are, however, the fundamen—
tal data for calculating the spatial dlstr1butlon of galax1es.
So many revisions prove that the methods of dlstance measure-
ment were (and probably are) far from ‘satisfactory, and
today“s data must be taken with great caution, even if their
formal errors are clalmed small Moreover, the data assumed re-
llable, today”s state of the art is as follows: the galaxies
are grouped into clusters and shells surrouhding‘ large voids
which 'contain‘ino visible matter at all (12) (This conclusion
was reached simply by estimating the distances to galaxies with
Hubble”s expansion law, i.e. by a more precise analysis of the
same data that were earlier used to support the claim.of Univ-
erse’s homogeneity on a smaller scale - a further hint that
such claims were insufficiently justified). In spite of that,
it 1is sometimes further claimed that the Universe is homogene-
ous - on a still larger scale (13). Such a large scale homogen-
eity coupled with small scale inhomogeneity is not properly
described by a spacetime with a continuous transitive group of
symmetry (curve ‘a.in Fig. 1) of which the FLRW spacetimes are
examples. A more appropriate description would be a spacetime
with a discrete group of symmetry in which the matter density
would be given by a function like curve b in Fig. 1 (see simi-
lar remarks by Ellisi(19)). Such distribution of matter does
not distinguish any single observer because} if the space is
- 2 -



infinite, there exist infinitely many identical copies of any
chosen finite portion of matter distributed regularly in space.
Such 'a solution can only be found, however, if the assumption

of continuous homogeneity is relaxed altogether.

Fig. 1. Matter density vs position in a 3-space t = const
of a spacetime that is homogeneous with respect to (a) a con-

tinuous group of symmetry, (b) a discrrete group of symmetry.

It should be streséed at this point that the copernician
principle only requires that no place . in ‘the Universe be
preferred. It does not say that all the places in the Universe

should be exactly 1dentlcal The latter assumptlon fulfills the
former, but is much stronger.

So much can be: said basing on the observations of luminous
'matter. The dynamics of galaxies and of clusters of galaxies
give a lot of evidence that there exists a. large amount of
matter in the Universe which does not emit any kind of observ-
able radiation, i.e. is not directly visible at all (see e.g.
(14)). No estimates were made of the density distribution of
that dark matter and none seem at present to be pdssible. How
can one claim that sometﬁing we do not see has a constant den-
sity? - is a question that should be answered by the proponents
of homogeneous models of the Universe.
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The foreg01ng arguments were based on observatlonal data A
purely theoretical argument also shows that more general models
of the Universe can be reconciled with the existing data (Fig.
2, after Ref. 15). Only the events lying ou our past light cone
are directly observed - and only the directions to them can be
- measured with a satisfactory precision, their positions along
the dlrectlons cannot (because the distance estimates rely on
risky assumptions, e.g. that the absolute brightness of the
n-th brlghtest galaxy in a cluster is the same in each cluster
(16)). All the other data that are needed to calculate the spa-
tial distribution of matter are inferred therefrom through
model-dependent procedures: 1. Through each event on the light
cone we draw a world-line_representing the history of that por-
tion of matter, e.g. a galaxy (the equations of those lines can
only be calculated given a specific class of spacetimes); 2.
Through the event "now" on our world-line (the verteé of the

light cone) we draw a hypersurface S of events simultaneous

-4 -



with our present event (Even within a fixed model this depends
on the reference system chosen; The reference system is usually
attached to a physical structure in the spacetime, e.g. the
congruence of matter world-lines); 3. The points of intersec-
tion of the world-lines with the hypersurface S represent the
present positions of the galaxies (The positions of those po-
ints on S depend on the slopes of the matter world-linés, i.e.
on the velocity of expansion, given the model and given S. This
velocity can be calculated from the observed redshift - provid-
ed we know precisely what ?art of the redshift is of cosmologi-
cal origin). 4. Only now can we calculate the spatial distribu—‘
tion of matter. It certainly does not help the case that astro-
nomeré ignore these theoretical subtleties and use simply the
Euclidean space as a background for interpreting the obServaf
tions. A positive program for'observational cesmology which
would consistently use only the language of'gene:al relativity
to relate the observations to the calculated properties of the-
oretical models has recently been elaborated by ElllS and co-
workers (17 - 19). , e

The foregoing- discussion should have shown that generaliza-
tions of the FLRW models are possible given the‘exisfing data.'
There is at least one instance in which a generalization 1is

seen to be necessary, and that is the formation of galax1es.

Taken l1terally, the FLRW models tell us qulte simply that no
galax1es may ever have formed out of a homogeneous and isotro-
pic background All theories of galaxy formation must con51der
perturbations of the FLRW models where the initial inhomogenei-
ties either appear as statistical fluctuations of density or
are introduced quite arbitrarily (see e.g. (20)) If we have
to, as we do; go beyond the FLRW models, it is at least equally
reasonable to do it by considering exact generalizations inst-
ead of approximate perturbations. ,

The author of this paper is in a definite minority, but by
no means alone with his criticism of "standard cosmology". Sim-
ilar concerns were expressed by Ellis (17 - 19, 21 - 23), Mac-
Callum. (24) and Mashhoon (25).

In addition to inhomogeneities, the FLRW'models ignore one
more - feature of the real Universe, namely the rotatlon of
matter. Already in 1946 Gamow (26) put forward the following
question: All galaxies and all stars rotate. The stars do ro-
tate because they condensed out of a rotating galaxy. Why do
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galaxies rotate? Perhaps because they condensed out of a rotat-
ing Universe. A '

Upper limits on the large scale rotation of the Universe
were found by Hawking (27) to be rather small, lying below

-14
10 rad/yr. However, postitive evidence of rotation of the
-13
order 10 ‘rad/yr seems to have been found recently (28). This
effect can only be described in a cosmological model more gen-
eral than the FLRW ones.

Since the FLRW models proved so successful in so many res-
pects, the more generél new models should contain them as spe-
cial cases, i.e. as first approximations. The treatisé herewith
presented is concerned with generalizations of the FLRW models
fulfilling this last condition. It consists of 6 parts:

1. "Cylindrical rotating Universe" (29, Paper 1I).

2. "All flow-stationary cylindrically Symmetric solutions
of the Einstein's field equations for a rotating isentropic
perféct fluid" (30, Paper II).

3.'"Ellipsoidal spacetimes, sources for the Kerr metric"
(31, Paper III).

4. "A Newtonian model of the source of the Kerr metric"
(32, Paper IV). | '

5. "Spacetimes with spherically symmetric hypersufaces"
(33, Paper V). -

16. "On the global geometry of the Stephani, Universe" (34,
Papér VI). o | ' | ' '
Although no definite solution to the problem of inhomogeneities
or - that of rotation was found, a'formalism for investigating
rotatihg cosmological models was introduced, a fruitfulA excur-
sion into the theory of stationary axisymmetric gravitational
fields was made, and an interesting generalization of the FLRW
mddels was rediscovered and investigated in the cosmological
context. The six parts of the treatise are discussed in more

detail in the sections that follow.

2. Cbsmological models with rotation (Paper I).

Several solutions of the Einstein”s field equatiohs are
known in which the material source is a rotating perfect fluid
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or dust. Nearly all of them are, however, stationary, i.e. the
matter does not expand. For this reason they are not interest-
ing from the point of view of cosmology. At the time when Paper
I (29) was being written, no solution with both expansion‘and
rotation was known. In the meantime one appeared (35), but it
does not contain the FLRW models- in the limit of zero rotation
it reduces to a statlonary spacetlme. The aim of Paper I rema-
ins thus wunfulfilled wuntil today: no physically interesting
model of the Universe with rotation exists as a complete solu-
tion of the Einstein§ equations. I

In Paper I an attempt was undertaken to obtain such a model
by relaxing, to the minimal degree possible, the assumptions
‘that lead to the FLRW models. The FLRW models are. spherically
symmetric. In the'presence of rotation the spherical symmetry
mnst disappear since the vorticity vector defines a preferred
direction in every point. The axial symmetry around the vorti-
city vector is the most that can remain of spherical symmetry
in this case. Homogeneity along the vorticity vector may be .as—
‘sumed as a remnant of the 3= dlmen51onal homogeneity ‘of the FLRW
spacetimes. As- a starting hypothe51s it was assumed that the
generators of these two symmetries commute and are orthogonal.

If we would now assume homogeneity also in the directions
perpendicular to the vorticity vector, then, together with the
axial symmetry, we would obtain a spatially homogeneous model
of one of the Bianchi types. These are, however, not very well
suited to describe a rotating Universe. In the Bianchi models,
the t-coordinate lines are orthogonal to the homogeneous spaces
t = const and so have no rotation. The world-lines of rotating
matter cannot thus coincide with these t-lines. Hence, in a ro-
tating Bianchi-type model the homogeneouS'hypersurfaces are an
artificial structure which is independent of matter that exists
in the Universe: the observers comoving with matter would not
see their local rest-spaces to be homogeneous. Therefore it
seemed more reasonable to abandon homogeneity altogether.

Since the assumptions described above were more _general .
than those underlying the Bianchi—type models, the latter might
be contained there as special cases. In that case, the symmetry
group assumed (two dimensional commutative) should be a subgro-
up of a Bianchi-type group. All Bianchi types except VIII and
IX do contain two dimensional abelian subgroups (36). Thus type
IX is excluded from this consideration, and together with it
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the closed Fiiedman - Lemaitre models.

The coordinate system used in Paper I was introduced by
Plebariski (37) and derived in more detail in the author”s PhD
Thesis'(38, see also 39). In short, it is a coordinate -system
in which the equations of motion and the equation of continuity
for the rest-mass dénsity of a perfect fluid are idenﬁically
fulfilled. These coordinates can be intfoduced'whenever the mo-
tion is isentropic (entropy per particle = const}vand rotation-
al (otherwise two of the cobrdinates are undetermined). They
have invariant geometrical meaning (see (38)), but are most ea-
sily defined by the statement that the vector fields of the

fluid velocity u, vorticity w and the metric tensor gaB assume

the form:
o o
u = HS ,
0 )
o -1 o

3 .
-2
9 =H ,
00 » ‘ . : . - (2.1)
2 =2
g =xH ,
01
g =g =0,
02 03
-2 =2
det (g )=-D H )

B

where p is the density of the rest-mass of the fluid and H is

the enthalpy per particle:



2
H= (e + p)/pc . : (2.2)

o 1 2 3
The coordinates (x , X , x , x ) are defined up to the

transformations:

0 0~ 17 2”7
X =X - S (x , x ), -
1 17 27
X = F (X r X )I
(2.3)
2 17 27
x =G (x ;r X ),
3 3° 17 27
X = x + T (x , x ).
where F and G must obey the equation:
F, G, -F, G =1, | | | (2.4)
1= 27 27 17
and S is then determined by:
2° B
s, =GP, -x , S, =GF, . | , (2.5)
17 17 27 2”

The assumptions about symmetry made in Paper I lead to the

conclusion that- the metric in this coordinate system depends
1 2

only on x and x and has the further property:

g = 0. 7 : ' . ’ . (2.6)
13 o ’



The field equations yield then the further result: g /g is

2 : _ 23 33
a function of x only. Thus by applying the coordinate trans-—
- 2 2 |
formation (2.3) with T (x ) = - [(g /g ) dx we obtain:
. 23 33
g = 0. (2.7)

A more detailed version of Paéer I was intended to be published
elsewhere, but after being turned down at the Proceedings of
the Royal Society and lost at the International Journal of The-
oretical Physics it remained in the preprint form only (40). It
contains all the calculations missing in Paper I (29) and can
be obtained from the author on request. A further 1ntegral of
the field equatlons was obtained there, but is too complicated

to be worth quoting.

3. Stationary cylindrically symmetric solutions of the

Einstein s equations with a perfect fluid source (Paper II).

The method used in Paper I appeared.well' suited for sta-
tionary cylindrically symmetric solutions of the Einstein”s
field equations. The author derived and investigated a large
class of such solutions in his PhD Thesis (38, 41).‘They were
obtained under the assumptions that there exists a Killing vec-
tor colinear with the velocity field of matter and another one
colinear with the vector field. of rotation in a %pacetimev
filled with a‘rotating perfect fluid. The field equations re-
quired then the existence of a third Killing field, the second
and the third Killing fields corresponding to cylindfical sym-
metry. However, the solutions obtained were, in a way, incom-
plete since they determined simultaneously the matter density
and the pressure and thus also the equation of state. This was
contrary to intuition, since one normally expects that an arbi-
trary equation of state can be imposed onto a solution as an
additional feafure, not determined by the field equations.
Paper II (30) explained what happened in (38) and (41): a spec-
ific proportionality factor was assumed there between the sec-—
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ond Killing field and the rotation vector what limited the gen-
erality of the result. The solutions found in Paper II were ob-
tained by the method of Paper I and of (38 - 41) from thé fol-
lowing assumptions:

7 1. The velocity field of matter is colinear with a  Killing
vector field, the proportionality £factor being an‘arbitrary
function. , |

2. The vector field of rotation is proportional to another
Killing vector field and the proportionality factor is another
arbitrary function. ' )

3. A third Killing vector field also exists which corres-
ponds to axial symmetry. Its form was initially assumed to be
quite arbitrary. _

No commutation relations were assumed between the Killing
vectors. 1In spite of that, the solutions obtained cannot be
called the most general cylindrically symmetric solutions, just
because of the alignmenfs between the Killing vectors and the
vector fiélds characterising the fluid flow that were assumed.
Although these assumptions are " quite natural, it should still
be investigated what happens when the timelike Killing field is
not colinear with the f£luid flow and when no spacelike Killing
field coincides with the rotation vector. »

The following results were obtained in Paper II:

1. All the three Killing vector fields must commutev unless
the third one is a linea? combination of the first two (in
which case the.spacetime has a smaller symmetry group than was
assumed) . Thus the metric dépends oh only one coordinate x .

2. The proportionality factor between the flow velécity and
the timelike Killing field must be exactly as assumed in (38). E

3. The proportionality factor between the second Killing
field and theivector of rotation contains an arbitrary function

2
f(x ). \

4. All components of the metric are algebraically deter-
mined through the solutions of an ordinafy linear homogeneous
equation of second order ((4.10) in Paper 1II) whose coeffi-

2
cients depend on the arbitrary function f(x ). For this reason

the most general solution cannot be found in a closed form.
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2 2
5. With f(x ) presént both in the matter density p (x )'
2
and in the pressure p(x ) the equation of state is ‘completely
arbitrary.

4. Ellipsoidal spacetimes (Paper III).

It followed from Paper I that the method discussed there
could not incorporate the closed FLRW models. In order to find
a cosmological model with rotating matter which would reduce to
a closed FLRW model in the limit of vanishing rotation, an in-
dependent method had to be created.

A natural first idea was the following. In the FLRW models
spheres are geometrically distinguished as orbits of the symme-
try group. In the presence of rotation, spheres should deform
into somethlng ax1ally symmetrlc. The 51mplest deformatlon of a
sphere is a spheroid. An approprlate generallzatlon of the FLRW
models would then be a spacetime in which the spher01ds are ge-
ometrically preferred structures. ‘ -

The problem was mathematically intractable in this general-
ity, but, similarly as in Paper I the apprOaéh appéared useful
in the stationary case: The spacetime metric thus obtained was
strikingly = similar to the Kerr solution (42) in the
Boyer-Lindquist coordinates (43). This observation gave rise to
Paper 11T (31). It appeared that the Kerr metric can be con-
structed from confocal spheroids through the following proce-
dure: '

1. In the 3-dimensional Euclidean space the oblate spheroi-
dal coordlnates (r, ©® , ¢ ) are introduced in which the r =
const surfaces are confocal spheroids, the 6 = const surfaces
are - one-sheet hyperboloids confocal to the spheroids and ¢ is
the azimuthal angle. From there, the metric form of a spheroid
is read out. » A

2. A curved 3-dimensional Riemannian space (with
positi&e—definite metric) is constructed out of the spheroids
such that the spheroids are the surfaces r = const in it, and
the r-lines are orthogonal to them. | '

3. A 4-dimensional spacetime with Lorentz signature is con-
structed from the spaces of point 2 and from a congruencé of
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timelike lines in such a way that the spaces are locally or-

thogonal to the lines, i.e. the metric tensor of the 3- -spaces,
B' is obtained form the spacetime metric g B through the pro-

jection:

(4.1)

haB = g&s - u,ug

.whefe‘u is the vector field tangent to the timelike congruence.

With- a certain choice of u and of the curvature of h wy the
Kerr metric emerges (in a coordinate system related to that of
Boyer and Lindquist by a linear coordinate transformation). The
spacetimes of this class were named ellipsoidal.

It was hoped that a source of the Kerr metric could possi-
bly be found in the same class of spacetimes. The idea was as
follows: If one of the ellipsoids (giveﬁ by the equation r =
const) should be an outer surfece ef the source, then the
8 —-dependence of both the exterior and of the interior metric
on that surface should be the same. Perhaps, then, both metrics
depend on 6 in the same way for every value of r. To check
this guess, a trial metric was substltuted into the Einstein’s
field equations with a perfect fluid source. The metric was ob-
tained from the Kerr metric in the ellipsoidal form in such a
way that a dlfferent function of r was substltuted for every
constant or the Kerr metric. The field equatlons were then tre-

ated as identities in 6. Altogether, a set of about 60 ordlna-_

ry differential equations for 9 unknown functlons of r result-

ed. It appeared that the only solution of these equations was
the Kerr metric itself. After Paper III was submitted for pub-
lication, Roos (44) proved a similar result. By analysing the
general set of Einstein’s eéuations for a Stationary—axisym—.
metric metric with the boundary eondition that the interior me-
tric matches continuously to the Kerr metric across a hypersur-
face S he showed that S cannot .coincide with any of the ellip-
soids r = const. | |

In Paper III a survey of literature on the sources of the
Kerr metric was also made. Judging from later citations, this
part of Paper III was the most ueeful one for readers. The sur-
vey included all papers about any kind of sources for the Kerr
metric written before the end of the year 1975. The various
methods of approach were classified and compared -~ and it was
shown in a few instances that an excessive importance was as-
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signed to conclusions from oversimplified assumptions or meth-
ods.

It is worth mentioning that the extreme difficulty of cal-
culations made for this paper prompted the author to start a
joint work with Dr. Marek Perkowski form the Warsaw Technical
University on a computer program for algebraic calculations in
general relativity. The program was WIitten in the years 1977 -
1979 and since 1979 is available for users (45) . Afterwards, it
was extended for other specialized programs and implemented on
several types of computers (46) and is slowly gainihg an inter-

national reputation.

5. Newtonian model of an ellipsoidal spacetime (Paper 1IV).

The ellipsoids of which the Kerr spacetime was shown to
consist (in Paper III) reminded of the equipotential surfaces
from Newtonian theory. Paper III contains a few citations from
the literature where a connection between the Kerr solution and
Newtonian fields which aré-constant on ellipsoids was suggested .
by different methods. It was therefore 1nterest1ng to see what
kind of body could produce such a field in Newtonian phy51cs.
To be sure: the Newtonian field which results from the Kerr me-
tric through the conventional "Newtonian limit" procedure 1is

not constant on ellipsoids, it is given by the potential:

V= e . ' | (5.1)

Paper IV (32) was devoted to the (purely Newtonian) investiga-
tion of a gravitational field whose equipotential surfaces are
confocal spheroids, and of a source of this field. One source
was known' since 1840: Chasles.(47) found that such a field is
produced by an infinitely thin spheroidal shell of finite mass
‘which coincides with one of the equipotential surfaces and has
a constant potential inside. Such a source seemed very artifi-
cial, however, from the astrophysical poinﬁ of view. In Paper
IV a source was found which is a finite portion of a rotating

perfect fluid in which the density, pressure and the scalar of

¢
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rotation are distributed continuously throughout the interior.
Unfortunately, another undesirable feature appeared in the
source: the density of mass either is infinite on the focal
ring of the ellipsoids or is zero on the disk spanned on this
ring and attains its maximum somewhere outside the disk. This
‘unusual behavior might have resulted from a 51mpllfy1ng assump-
tion that the equipotential surfaces inside the body are confo-
cal ellipsoids of the same family as those outside the body.
This assumption is not necessary, and it Stlll remains to be
verlfled whether a nonsingular source exists.

A ring singularity is familiar from the investigation of
the Kerr metric and its possible sources. It is interesting
‘that it appears only in the interior of the source:.the exteri-
or field remains nonsingular everywhere even if the body gener-
ating the field is squeezed to the focal disk of the ellipso-
ids. - | ,

Particularly appropriate to the investigations of the Kerr
metrlc is the follow1ng result of Paper IV: the exterior gravi-
tatlonal field has only one parameter whlch descrlbes its non-
sphericity, @, and so all the multipole moments are algebral-
cally dependent- after one of them is fixed, all the others are
determlned, This holds also for the Kerr metric, and this
statement was sometimes used as an argument that the (still
unknown) material source must have a very peculiar, rlgldly de-
termined structure. The 'solution of Paper IV seems. to be a
counterexample: the den51ty distribution contains an arbitrary
function f(r) and so is fairly general.

" Further study of the connection between the solutlon of

Paper IV and the theory of relat1v1ty is under way (48).

6. Spacetimes of intrinsic spherical symmetry (Paper V).

The considerations of section 1, and in particular Fig. 2,
show that what is checked against astronomical observations is
in fact the 3-dimensional space t = now rather than the whole
spacetime. Tt is then a naturai question, to what extent the
‘3-geometries of the spaces t = const determine = the 4-geometry
of our spacetime.

To answer this guestion, a technique of "building" the

spacetime of a set of its subspaces was applied, similar to the
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one used in Paper III. At the time when Paper V (33) was being
written, the proposal of Collins (49)‘was published to investi-
gate the so called "intrinsically symmetric" spacetimes in
which symmetry groups Sperate on families of subspaces rather
than on the whole space. Thus by accident Paper V appeared to
be one of the first realiSations of this program. The real in-
spiration to write this paper came, however, from the publica-
tions of Ellis and coworkers (17, 18, 21 - 23).

In the beginning it was assumed that:

1. The spacetime is a congruence of 3-spaces, each of which
is spherically symmetric.

2. The spaces are orthogonal to the family of t-coordinate
lines and are given by the equations t = const.

3. The whole spacetime not necessarily has any symmetry.

4. The Einsfein's field equations are fulfilled, the source
being either a perfect fluid of dust or the A-term; the empty
space equations were also included.

5..Thefmatter in the spacetime, if there is any, either
moves along the t-lines of deviates from them only in radial
directions (in order to make the lack of spherlcal symmetry in
the spacetime not too eaSlly v151ble)

The field equatlons appeared to impose very strong limita-
tions on the solutions because most of the separate cases that
had to be con51dered led to spacetimes that were spherlcally
symmetric in the ordlnary sense. All the dust and empty space
solutions, both with and without the A-term, belong to this
class. With a perfect fluid source, however, there exists one
solution which has in general no symmetry at all. Its metric

form is:

2 2 2 2 -1 2 2 2 2 2
ds =Ddt - (1 +Kr ) dr - r (46 + sin 0 d¢ ), (6.1)

where K = const,
D = r{A(t) sin6 cos¢ + B(t) sin® sin¢ + C(t) cosd}

2 1/2 (6.2)
+ E(t) (1 + Rr ) + s,

A, B, C, E are arbitrary functions of t, and either s = 0 or s
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can be scaled to 1 by a coordinate transformation. The solution
is conformally flat, the energy density and pressure are given
by: '

Ke = =3K = const
. (6.3)
3K(1 - 2s/3D),

Kp

4 _
K = 8mG/c . The solution was, firstfound by Stephani (50) and is
a simultaneous generalization of the interior Schwarzschild so-
lution (which results from it when A = B =C =0, E = const)
and of the deSitter solution (which results when s = 0). Al-
though it does not seem to be of any astrophysical interest, it
shows that such solutions do indeed exist in which preferred
sets of of hypersurfaces have a larger symmetry group than the
whole spacetime. Paper V contains a short investigation of the
properties of the solution (6.1-3). It appears that >a spherl—
cally symmetric spacetlme results when the t-lines are geode—'
sics, and a spacetine w1thout a symmetry results if the lines
are nongeodesic. , ' ' o

In the second part of Paper V a similar study'was undertak-
en of spacetimes whlch are “1ntr1n51cally" homogeneous and iso-
tropic in the sense of Colllns (49), i.e. are congruences of
spaces of constant curvature. Similar assumptions were made.
Assumption 1 was modified to:

1°. Each spatial section is a space of constant curvature. -
while the A-term and the empty space were dropped from assump-
tion 4 since they did not promise anything interesting to em-
erge. Co . o o
_ In this case, an interesting generalisation of the FLRW mo-
dels appears which was also first found by Stephani (50), but
outside the cosmological context. The solution is given by the

formulae:
2 2 2 2 2 2 2 2
ds =D dt - (R/V)dx +dy + dz ), (6.4)
R 9 V _
D=F--—- (-, - (6.5)
V 3t R |



1 2 : .2 2

V=1+-k{(x-x) + (y-y) + (2 -2 ) 3, (6.6)
4 0 0o 0
2 2 2 o
k= (C -1/F )R, (6.7)
2,
ke = 3C , (6.8)
2 o dcv 3 v
Kp = = 3C +2C == = / —— (- ), - - (6.9)
dt R 5t R
0 = -3/F, R ‘ (6.10)
o -1 o _ _ _
u =D § , o , - o | (6.11)
0
a =0, i
(6.12)
i 2 2
a = (V /DR )D i=1, 2, 3.

where F, R, C, x ; Y , z are arbitrary functions of time, ¢ is
0 0 o0

the energy densify, p is thé pressure, 6‘is>the scélar of ex-

pansion of the fluid flow, u is the 4—ve1001ty of the perfect

fluid source and a is the acceleration field. The shear and ro-

tation of the fluid are zero.

The solution has in genéral no symmetry at all. Its most
striking property is the fact that k is a function of t and its
sign is not deﬁermined, Since k is the curvature index of the
3-spaces t = const, one sees that in this spacetime some space-
like sections have p051t1ve curvature (and so should be closed)
while some others have negative or =zero curvature (and so
should be open). Other differences with the FLRW solutions are
the following:
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1. Matter moves with acceleration, i.e. not on geodesic
lines. ' '

2. The equation of state is not of the form ¢ = e (p), but

depends on the positionvih the space: p = p (e, x, v, Z).
This last property means that.a single thermodynamic function
of state (e.g. pressure) does not suffice to describe matter in
_ this'model, at ieast one other function is necessary, e.g. tem-
perature which would have different values in different places.
' This situation is thus even more realistic than in the FLRW mo-
dels. ’

The investigatioh of global geometricai properties of this
Stephani Universe was postponed to Paper VI. In Paper V only.
local properties and the derivation of the solution were dis-
cussed. -

The Stephani Universe reduces to a FLRW model when any one
of the following situations occurs: 4

1. The functions x +r Y + 2 and k are all constant.

o o 0o |

2. The acceleratioﬁ field vahiShes.(ite; ﬁatter moves Qﬁ
geodesics). ' T | |

3. The equatlon oF state 1s of the form e = ¢ (p), i.e. it
does not depend on p051t10n.e'vf7-‘ o - ;

}ThlS solutlon is conformally flat, and moreover it is the
most general confofmally‘ flat solution with a perfect fluid
source and nonvanishing expansion (51).  _

In this model, matter flows along the t-lines. The deriva-
tion in Paper V,shows that a generalizatien-sheuld'be expected
when this assumption is dropped. A further generalization would
be possibie in which the t- lines are not orthogonal to the
spaces t = const This still awaits to be done.

It is seen from the derlvatlon in Paper V that the .result-
ing 1ntr1n51cally homogeneous spacetime depends on the coord-
inate representation of the sections. Namely, the'spacetlme me-
tric is obtained on replacing constants in the 3- space metrlc
by arbltrary functlons of t. Coordinate transformations in the
3-spaces can generate spurious constants which have no meaning

"in the intrinsic geometry of the spaces. The functions that re-

. place them are, however, meaningful: they describe the way in

which the spaces are stacked together +to form a spacetime. In
particular, when X =y =1z = const, the coordinate cen-
0 0 0 ‘




ters of spherical symmetry in the spaces t

const are all

placed on the same t-line x =x ,y =y , z z , and so the
0 0 0

resulting spacetime is spherically symmetric, too. With arbi-
trary x , vy and z , the centers of symmetry in the 3-spaces
| 0o 0 0 -
are arbitrarily shifted with respect to the t-lines and no sym-
metry in the spacetime remains.

The results of Paper V wefe obtained with the help of the
program ORTOCARTAN (45, 46, 48) which was also used for Paper
VI.

7. Global prdperties of the Stephani Universe (Paper VI).

To most of the readers and auditors which first heard of
the Stephani Universe, and to the author himself, it was diffi-
cult to imagine how the same spacetime could have some space-
like sections ciosed and some otherélopen. Therefore, a separ-
ate study was devoted to the global geometrical picture of this
solution. It resulted in Paper,VI,(34).

It was shown by Stephéni (50) that this solution can be em-
- bedded in a flat five-dimensional space. He only proved, .
however, the existence of the embedding. To construct it expli-
'citly in the most general case was an impossib;e task because
the solution contains 6 arbitrary functions of time. The embed-
ding would thus have to be defined through solutions of ordina-
ry differential equations confaining arbitrary functions as
coefficients, or through indefinite integrals of these func— 
tions. It was more instrﬁctive to study a special case in which
the embedding could be performed explicitly.

Such a special case results when C = const; the Stephani
Universe .reduces then to the deSitter solution. It was further
assumed x =y =z =0, R = const, k = -t. In the special case

0 0 0

C const these additional assumptions amount just to a ‘choice

of a simpler coordinate system (foliation) because once C =
const, the solution (6.4-12) describes the deSitter spacetime
irrespectively of the forms of the other functions.

The deSitter manifold is then described as a 4-dimensional

one-sheet ' hyperboloid embedded in a 5-dimensional pseudoeucli-
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dean space. The discussion in Paper VI and the figures are lim-
ited to the intefsection of this 4-dimensional hyperboloid with
the subspace {6 = const, ¢ = const}, the resulting hyperbolo--
id being 2-dimensional, but this case carries all the important
information. The axis of the hyperboloid is parallel to the %
coordinate axis in the flat space and pierces the (X, Y) plane
in the point {X =0, Y = 1/C}. The t = const spaces are inter-
sectibns of the hyperboloid with planes containing the X axis,
the t-lines are its intersections with planes containing the Z{
axis. If a t = const plane is tilted to the (X, Y) plane at a
sufficiently small angle, the intersection is an ellipse (i.e.
a closed space of positive curvature). If it is tangent to the
asymptotic cone of the hyperboloid, the intersection is a para-
bola - a flat open space. If it is tilted at a still greater
angle, the intersection is a hyperbola - an open space of nega-
tive curvature. It was noted already long ago by Schr&dinger
(52) that the de Sitter spacetime may be foliated into spaces
of differingvtopologies, but he did not consider the case when
spaces of different topologies belong to the same one folia-
tion.. o _ } . .,
Next, the generic'case was studied in'another speciél case,

X = y' =z =0, when the spacetime is spherically symmetric,
o 0 0 S | :
in order to see how faithfully the de Sitter manifold foliated
as above, represents the general solution. More important of the
properties found are: ' ‘ _

- . 1. Each section t = const with k(t) > 0 is (or can be ex-
tended to) a space of finite volume.

2. Each section t = const with k(t)
3
tended to) the infinite space R .

0 is (or can be ex-

3. Each section t = const with k(t) < 0 is (or can be ex- .
tended to) a space of infinite volume, but even so extended it
will not intersect some of the matter flow lines.

-4. Each space t = const with k(t) < 0 consists of two dis-
joint sheets. The . one containing r = 0 is called the "near
sheet". _

5. The infinity of the near sheet of a space with k(t) < 0
does not lie on any matter flow line (theoremVS.T).

6. The infinity of a flat space t = const does not lie on
ahy flow line either (theorem 5.2).
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7. Whenever k becomes negative, there exist such flow lines
on which a finite value of t corresponds either to the infinite
future (theorem 5.3) or to the infinite past (theorem 5;4).

The singularity at r = 0 seen on the pictures in “Paper VI

looks differently 1in the general case. It is then not just a
coordinate singularity, but a true curvature singularity, and
it occurs at a different value of r for every t. It is an addi-
tional singularity to that one which is predicted by the Hawk-
ing-Penrose theorems (53) and which occurs also in the FLRW mo-
dels. The additional singularity can be avoided when the
functions k(t) and R(t) and their derivatives obey certain ine-
qualities (section 6 of Paper VI). If k(t) > 0 for all t, then
the inequalities can be fulfilled without pfoblems. Otherwise,
they imply that the pressure must be negative somewhere. This,
“in tﬁrn, can only be avoided by matching the Stephani Universe
to an empty space solution. | '
Y Some years ago Geroch (54) and Kundt (55) published. papers:
in which they showed that the topology of spacellke sectlons of
a spacetlme cannot change from one section to another if cer-”
tain assumptlons are fulfilled. . The Stephani Universe does not
contradict these theorems because: ‘ ‘

1. The Geroch’s theorem says that if the part of spacetime
contained between two compact spacelike sections is itself com-
pact and causal, then the two sections are diffeomorphic - and
this is fulfilled by‘the Stephani Universe. Each part of the
Stephani Universe which contains an open section simply does
not obey ‘the assumptions.of Geroch. ' '

2. Kundt showed that if the sections are transverse to a
continuous "family of timelike directions and the manifold is
geodesically time complete, then the sections are either all
. connected or all nonconnected. In the Stephani manifold all
sections are connected.

It was anticipated by Brill (56) and Yodzis (57) that
spacetimes with changing topology of spacelike sections might
exist, but they did not consider any specific solution. Paper
VI is thus the first one which discusses such a change on an

explicit example.
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8. Problems for the future.

The Stephani Universe of Papers V and VI is still not sa-
tisfactory as a cosmological model because the matter den81ty
in it depends only on time. Further (or other) generalizations
of the FLRW models are thus needed. They can be searched‘for
instance by pursuing the cases left out in +the derivation of
the Stephani model (e.g. the case when the flow lines do not

coincide with the t-lines) or by considering spacetimesb with

‘more general geometries of the spacelike sections, e.g. space-

times with conformally flat sections. The study of the second

case is under way (58), but no conclusions came out as yét;

| The cosmological predictions of the Stephani Universe

should be checked against the existing observational data, in

the first step in the traditional framework; in Ordér to see
what constraints follow for the functions k;, F, R, X , v , 2
0 0 0

- This would be a good subject for a MSc Thesis. A more ambitious

project - would be to carry out the same study within the frame- -

work proposed by Ellis (17 - 19).

The problem of a realistic cosmolog1cal model w1th rotation

is still outstandlng.
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