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Abstract  

A preliminary investigation of global properties of the Stephani solution of the Einstein 
field equations is presented. This solution generalizes those of Friedman-Robertson-Walker 
(FRW) in such a way that the spatial curvature index k (a constant in the FRW models) is a 
function of the time coordinate. The de Sitter solution, which is also a special case of the 
Stephani solution, is analyzed in the Stephani coordinates to gain insight into the global 
structure of the manifold and its foliation. The general metric is found to have several prop- 
erties in common with this example. It has singularities which can be avoided either by 
matching the solution to an (as yet unknown) empty-space solution or confining the curva- 
ture index to be positive at all times. 

w Introduction 

The Stephani  Universe is a solut ion of  the Einstein field equat ions  wi th  a 

perfect fluid source which conta ins  the wel l -known Fr i edman-Rober t son-Walke r  

(FRW) cosmological models  [1 ,2 ]  as special cases. As in the FRW models,  the 

hypersurfaces or thogonal  to mat te r  world lines have cons tant  curvature,  bu t  in 

contrast  to the FRW case the  curvature index k is an arbi trary func t ion  of  the 

t ime coordinate ,  which can change its sign from one hypersurface to another  (in 

the FRW case it was a cons tant  normalizable ,  if nonzero ,  to +1 or - 1). Thus,  
a l though in each selected m o m e n t  t = const  the 3-space has the same geometry  

as if  it were a subspace of  a FRW model ,  in  general the Universe may  appear to 
have a positive spatial curvature at one t ime and a negative one in another  
m omen t .  
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The solution was first found by Stephani [3] as a special example of a space- 
time embeddable in a flat five-dimensional space, and later reobtained by the 
present author [4] in a direct search for solutions which are "intrinsically" sphe- 
rically symmetric in the sense of Collins [5] (i.e., are composed of spherically 
symmetric subspaces). 

The existence of this solution shows that the distinction between the closed 
and the open Universe is not required by Einstein's theory of gravitation as such, 
but is due to the very strong symmetry assumptions which are put into the 
models right from the beginning. Namely, as mentioned in Ref. 4, it is the as- 
sumption of homogeneity in the Bianchi sense which results in fixing the spatial 
curvature index. If the space-time is allowed to have the weaker "intrinsic homo- 
geneity," i.e., to be a one-parameter family of three-dimensional homogeneous 
spaces (here: spaces of constant curvature) which is not required to have the 
same symmetry as a whole, then the Stephani Universe emerges as a rather 
special case. 

The difference between these two types of homogeneity can be qualitatively 
described as follows. We set up observers in all possible spatial locations, let 
them perform any kind of observations they wish, and ask them to write the 
chronicles of their findings. In the space-time which is homogeneous in the 
Bianchi sense all the chronicles should be just identical. In the space-time which 
is only "intrinsically homogeneous" the chronicles may greatly differ in their 
descriptions of the details of evolution of the Universe in the vicinity of the 
observer, but they will still agree with respect to the geometry of each single 
rest-3-space of matter. 

In fact, there were works which aimed, explicitly or implicitly, at such a 
generalization, but failed to obtain it because of other restrictive assumptions. 
Namely, Mashhoon and Partovi [6] investigated the uniqueness of the FRW 
models among spatially isotropic models in which matter moves without shear. 
They proved these models to follow uniquely if, in addition, the electrical neu- 
trality of matter and an equation of state of the form e = e(p) (with e > 0 and 
p > 0) are assumed. They missed the Stephani model just because of the last 
assumption. Such an equation of state will be shown in Section 2 to be incom- 
patible with this model. 

Bergmann [7] assumed the curvature index k to be a function of time, but 
did not allow for the acceleration field in the fluid source [the function D in 
equation (1) of this paper was assumed to be equal to 1 ]. Under these two as- 
sumptions the matter cannot be a perfect fluid: there are additional components 
in the energy-momentum tensor which Bergmann interpreted as heat flow. In 
the Stephani model matter moves necessarily with acceleration, and this explains 
why the model did not show up in [7]. 

Another kind of work in the same spirit is the discussion by H. J. Schmidt 
[8] of the possible transitions between various Bianchi types of symmetry 
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groups of the spacelike slices in a space-time of an arbitrary symmetry. Several 
such transitions are allowed if one assumes that the metric is twice continuously 
differentiable, but their number is limited if one demands in addition that inside 
the hypersurface on which the Bianchi type actually changes the curvature is 
bounded, or that the positive energy condition holds. In fact, the transition from 
type II to type I is excluded by the last assumption, and the author conjectured 
that this is so for all the other transitions. All this was shown, however, under 
the assumption that the orthogonal trajectories of the homogeneous slices are 
timelike geodesics. As will be seen in Section 2, the requirement that the t lines 
(and so the flow lines of matter) are geodesics reduces the Stephani model to a 
FRW solution, and is thus a rather strong assumption. 

The possibility of  the existence of a space-time in which the topology of 
certain geometrically preferred sections is changing in time has been also antic- 
ipated [9-13]. Specifically, it was shown by Geroch [9] that, if a space-time 
has two compact spatial sections, while its part contained between the sections 
is itself compact, and causal in addition, then the two sections must be diffeo- 
morphic. Kundt [10] proved that if the space sections are transverse to a con- 
tinuous family of  timelike directions while the manifold is geodesically time 
complete, then the sections are either all connected or all nonconnected. Yodzis 
[12, 13] has shown that changes of spatial topology are possible if one slice is 
obtained from any other by a finite number of spherical modifications in the 
sense of Morse [12], but did not give any specific example of a space-time with 
such a topology change. 

It is seen from this short overview that no solution qualitatively similar to 
that of Stephani has so far been considered from a global point of view. This 
paper discusses the geometry of the Stephani Universe in the vicinity of the 
spatial hypersurface on which the spatial curvature changes from positive to 
negative. Section 2 is a review of local properties of the Stephani solution known 
already before. In Section 3 a special Stephani solution, in which the metric is 
that of  the de Sitter, is discussed in order to display an example of a foliation of 
a space-time such that each leave has a constant curvature, but the curvature 
changes sign from one leave to another. In Section 4, the interior geometry of 
the spatial sections is discussed. In Section 5 it is shown that the general Stephani 
solution shares several qualitative properties with the de Sitter solution foliated 
as in Section 3. It is shown that the spatial slices t = const of negative curvature 
do not intersect those matter lines which are too far from the central line, that 
if such slices exist then on several matter lines a finite value of the preferred time 
coordinate corresponds to future timelike infinity, and that if different slices are 
tangent somewhere, then this leads to singularities. In Section 6 characteristics 
of the matter congruence are discussed, and it is shown that acceleration and 
pressure inevitably have singularities unless either the solution is matched to an 
(as yet unknown) exterior solution or the curvature index is confined to be posi- 
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tive at all times and certain inequalities are imposed on the arbitrary functions 
and their derivatives. It is concluded in Section 7 that the Stephani model with 
k > 0 is in no point contradictory to the FRW models as concerns the standard 
observational tests, and was so far refuted only because it did not fulfill the a 
priori philosophical premises which lead to the simplified FRW solutions. 

w Some Properties o f  the Stephani Universe 

The Stephani solution is given by the following formulas: 

R2(t) 
ds 2 =D2 dt 2 - V2 (dx 2 +dy 2 +dz 2) (1) 

where 

V = 1 + �88 k(t) ( [ x -  Xo (t)] 2 + [ y _  yo(t)] 2 + [z-  Zo(t)] 2) (2) 

D = F ( t ) ( ~ - ~ )  =F R a V 
V- ~)t R- (3) 

k = [C2(t) - 1/F 2 (t)] R 2 (t) (4) 

C, F, R, xo ,Yo, Zo being arbitrary functions of time. The metric (1) fulfills the 
Einstein field equations with a perfect fluid source having the energy density 

Ke = 3C2(t), K = 8zrG/c 4 (5) 

and the pressure: 

2 dC VR/~t V gp = -3C (t) + 2C(t) --~ R (6) 

The metric (1) is conformally flat. This implies that the empty-space solu- 
tion belonging to the family (1), obtainable as the special case C = 0, is just 
Riemann flat. 

The matter source in this solution is a pefect fluid flowing along the t-coordi- 
nate lines, having zero shear and rotation, acceleration equal to 

{ti=(V2/DR2)D,i,  i = 1 , 2 , 3 ,  xl =xl ,  x2=Y,  x3=z ,  tJ~ (7) 

and expansion equal to 

0 = -3IF (8) 

The Stephani space-time is locally FRW if and only if one of the following 
conditions holds: 

(a) k = const and xo ,Yo, Zo = const 
(b) ua = 0 
(c) p =f(e) ,  wheref is  independent o f x , y ,  z 
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(actually any one of these conditions implies the other two). In general, the 
Stephani solution has no symmetry. With Xo ,Yo, Zo being constants it becomes 
spherically symmetric about the single line x = x0 ,y  --Yo, z = Zo, still lacking 
the homogeneity of  the FRW models. Condition (b) means that in the general 
Stephani model matter flow lines are necessarily nongeodesic; they become 
geodesics only if the model reduces to a FRW model. 

The condition (c) means that the equation of state is in this model position 
dependent: an equation of the form e = e(p)  holds along each flow line sepa- 
rately, but is different on each line. 

As can be seen from (4), k is an algebraic expression involving three arbitrary 
functions of time which are not determined by the field equations. The sign of 
k is not fixed by (4)- i t  can change with time, too. We shall be concerned with 
this possibility in what follows. For brevity we will call the change from positive 
k to negative k the "opening up" of the Universe and denote it t = top. The op- 
posite change we will call the "closing down" and denote it t = t e. 

w The de Sitter Solution as a Special Case o f  the Stephani Solution 

It is seen from (5)-(6) and from the vanishing of the Weyl tensor that with 
C being a constant the Stephani solution reduces to the de Sitter solution (since 
only C 2 appears in the metric, the case C 2 < 0 can also be included in the con- 
siderations, so that both de Sitter's solutions are covered). In the coordinate sys- 
tem of (1)-(4) the de Sitter solution is foliated in an exotic way. This foliation, 
similar to those considered by Schr6dinger [14], allows for an explicit display of 
some of the qualitative features of the Stephani Universe, and so we will con- 
sider this special case first. 

With C being constant, (1)-(4) gives the de Sitter metric irrespective of the 
form of the functions R(t), F(t) ,  Xo (t), Yo (t), Zo (t), so that any further assumption 
concerning the form of these functions amounts to a choice of a special foliation 
(congruence of world lines). To make the calculations easier we will assume that 
x0 =Yo - zo = 0, R = const and k( t )  = - t, so that for t < 0 the curvature of the 
spatial sections is positive while at t = 0 the Universe "opens up" and remains 
open for t > 0. With this choice of k we consider only the case of a single change 
of  spatial topology, but we will show this at the end of the section to be the 
only reasonable choice. With the forms of C, R, k, x0 ,Yo, Zo specified above 
we have 

F = R / ( C 2 R  2 + t)l/2 

R2r4 dt  2 R 2 
ds 2 = 

16(1 - �88 tr2) 2 (C2R:  + t) (1 - �88 tr2) 2 

(9) 

[dr 2 + r2(dO 2 + sin: 0 dq~2)] 

(10) 
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where we have introduced spherical coordinates in an obvious way. Moreover, to 
make an explicit investigation of  geometry possible, we shall limit ourselves to 
a two-dimensional subspace of  (10) given by 0 = const, q~ = const. We see that 
the metric form (10) is well defined in the coordinate ranges {- C 2 R  2 < t <<. O, 

0 < Irl < ~o} and {t > 0, 0 < Irl < 2/vf/,  2 / V q <  Irl < oo}. At t = - C 2 R  2 , 

r = 0 and r = 2/x/'Ythe metric becomes singular, but the singularities will be seen 
later to be spurious ones, due to the coordinate system chosen. 3 We let r assume 
negative values in the two-dimensional space under consideration, with the con- 
vention that the point (-r ,  0, ~b) is identical with (r, 7r - 0, q~ + lr) throughout the 
whole space. 

Such a two-dimensional space can be parametrically represented as a hyper- 
surface in the three-dimensional flat space with the metric form 

d S 3  2 = d Z  2 - d X  2 - d Y  2 (11) 

The embedding equations are 

X = R r / ( 1  - �88 tr  2 )  (12) 

r =  �89 cR2r  /(a - �88 tr (13) 
Z = � 8 9  z + t )a l2 / (1  - �88 tr  2 )  (14) 

The equation o f  the (t, r) surface can now be written as 

Z 2 - X 2 - ( Y -  l / C )  2 = -  1]C 2 (15) 

Thus the 2-space of  interest is a subset of  the one-sheet hyperboloid of  revolu- 
tion given by (15). The hyperboloid has the symmetry axis parallel to the Z axis 
and piercing the (X, Y) plane in the point (X, Y) = (0, 1/C), in the pseudo- 
Euclidean space o f  metric (11). The parametrization (12)-(14)  covers only that 
part of  the hyperboloid (15) on which { Y > O, Z > O} (where I rl < 2/x/t- for 
t > O) and { Y < O, Z < 0 } (where t > 0 and I r I > 2/x/F). Z = 0 corresponds to 
t = - C 2 R  ~ , while Y = O, where r = 0 or t = 0% is a singular locus of  the parame- 
trization (12)-(14).  The points where t > 0 and Irl = 2/V~-are at _+o~. 

Let us now describe the foliation of  the hyperboloid (see Figures I and 2). 
From (13) and (14) we see that 

Z = [(C2R 2 + t ) I / 2 / C R ]  �9 Y (16) 

i.e., the {t = const} lines are lines of  intersection o f  the hyperoloid with the 
planes given by (16), all of  which contain the X axis. The t --- - C 2 R  2 line is the 
Z = 0 cut, i.e., the equatorial circle o f  the hyperboloid. The other (t = const) 
lines with t < 0 are ellipses. The t = 0 line is the Z = Y cut which is a parabola. 

3The condition R = const is responsible for the singularity at r = 0. With R = const this 
singularity appears also in the general case, see (6). It is the special case of the singularity 
which appears whenever the function (a/at) (V /R)  has a zero; see Sections 5 and 6. 
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Fig. 1. Projection of the hyperboloid representing the de Sitter manifold onto the (Y, Z) 
plane. The straight lines are actually side views of the ellipses, the parabola and the hyper- 
bolae, as indicated. The parts of the hyperboloid lying in the Sectors II and IV are not 
covered by the paremetrization of equations 12-14. Note that each section t = t o > 0 con- 
sists of two sheets. Each section r = const also consists of two sheets, the second of which 
(not shown) always passes through X = Y = Z = 0. 
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Fig. 2. The same hyperboloid projected onto the (X'~ Z) pL~e, httetsect~o~s of different 
[ ~ const subspaces are a r t i fac t s  xesvJtSng f rom saporessing one  d imens ion .  The plane Y = 0 
which  co r re sponds  Co the s~ngulaf l#n]ts~ -~ 0 and t--, o~ i n t e r sec t s  the  hyperboloid a long  
the l igh t  cone  at  X = Y = 2 --- O. This st~ows that a/l o t h e r  t = cons t  sections oxe indeed 
spacel ike ,  
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Other (t = const) lines with t ~> 0 are hyperbolas.  In the limit t -+ ~ ,  as already 
mentioned,  the (t, r) parametrizat ion becomes singular. The formulas (12) - (14)  
ascribe to t = ~ the single point  X = Y = Z = 0 while equations (15) and (16) 
would make us expect that t -~ ~ corresponds to Y -+ 0, i.e., to the pair of  
straight lines Z 2 - X 2 = 0 which result from cutting the hyperboloid by the 
plane Y = 0. We will explain the reason of  this singularity below. 

From (12) and (13) we see now that 

Z = �89 C R r X  (17) 

and this shows that the r = const lines (i.e., the t lines which coincide with world 
lines of  matter  in the general Stephani solution) are lines of  intersection of  the 
hyperboloid with the planes (17), all of  which contain the Z axis. The limit 
r -+ 0 which corresponds to the plane Y = 0 is again singular, the limits r -+ 
and r -+ - ~ bo th  correspond to the same hyperbola  {X = 0, C 2 ( Y -  1/C) 2 - 

C 2 Z  2 = 1 }.  

The (t, r )paramet r iza t ion  of  the de Sitter space4ime used in ( 1 2 ) - ( 1 3 ) h a s  

several unusual features which we will later find in the general Stephani solution. 
We shall now briefly describe them. 

We can go along each r -coordinate  line from r = 0 to [rl = oo only if t ~< 0. 
If  we take any t = to > 0 section o f  the hyperboloid,  then the hyperbola will 
escape to future infinity {Y -> 0% Z -> oo} at the finite value of  Irl  = 2~(to)  1/2 

without crossing any of  those t lines for which I r 1/> 2/(t0)1/2. On those lines, 
the value of  the t coordinate can never reach to. In other words, in this foliation 
each t line except Irl = co will have a finite maximal value of  t at future in- 
finity. This maximum tends to zero as r --> 0, but  at r = 0 the value of  the t 
coordinate becomes indefinite since the r = 0 lines coincide with the t -- oo lines, 
and so the t = oo hypersurface fails to intersect any of  the t lines in any definite 
point.  This is the meaning of  the t = oo coordinate singularity. Incidentally,  the 
singular lines t = ~o (r = 0) coincide with the light cone at X = Y = Z = 0. All the 
other sections t = const are thus indeed spacelike. 

Note that  if, at t = to > 0, we let I r I continue beyond r s  (to) a___ef 2/(to)1/2, 
then we jump from the future infinity on the hyperboloid,  where Z = +0% to 
the past infinity where Z = - oo. Thus in fact each t = const > 0 hypersurface 
consists of  two sheets, one of  which lies in the { Y 1> 0, Z / >  0 } sector of  the 
hyperboloid and contains the neighborhood of  the point r = 0, the other lies in 
the sector { Y < 0, Z < 0 } and contains the neighborhood o f  the point  r = +oo 

(which actually coincides with r = - oo). We shall sometimes refer to them as the 
"near sheet" and the "far sheet," respectively. When t -+ o~ the sheets touch each 
other at X = Y = Z = 0 and form a pair of  straight lines. 

If  we explore the Universe from within a certain t = to > 0 space (of  negative 
curvature) starting from r = 0, we find that some of  the t -coordinate  lines (mat- 
ter flow lines in the general case) which still intersected the t = const spaces at 
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t < 0 (when the curvature was positive), slipped out of the space and there is no 
way to reach them, even if we proceed to an infinite distance from the starting 
point. Moreover, as k decreases (t increases) being negative, more and more t 
lines slip out of  the space. Simultaneously, with k < 0, a second sheet of each 
t = const space appears which is separated from the first one by a singularity of  

_ r2 the affine distance s - frl  ds[t ,o ,r  and into which more and more t lines 
enter. We will find precisely this occurring in the general case. 

Let us also note that each r = const hypersurface consists of two sheets, one 
of which contains the point X = Y = Z = 0. With t > 0 (k < 0) and [rl > 2/X/7", 
the hypersurfaces t = const and r = const intersect in the sector (Y < 0, Z < 0),  
while with t < 0 they intersected in the sector (Y > 0, Z > 0).  This is a warning 
that the t lines which keep entering the far sheet are not the same ones that 
escaped from the near sheet. Moreover, if we assume the time arrow on the de 
Sitter manifold to point toward Z = +o% then the time ordering of the near 
sheets with respect to the t coordinate will agree with this global one, but the 
t ordering of the far sheets will be reversed. 

We have chosen the coordinates so that k ( t )  = - t in order to be able to 
describe and display the foliation of the space-time in a simpler way. However, 
an arbitrary k ( t )  can be introduced simply by the coordinate transformation 
t = - k ( t ' )  in (9), (10), (12)-(14), and (16). It is seen then that with arbitrary 
k ( t )  the tilt of the sections t = const with respect to the X Y  plane need not 
change monotonously with t. In particular, with the function k ( t )  having zeros 
at several values of  t, the t = const sections of the hyperboloid corresponding 
to these values of  t will all lie in the plane Y = Z,  i.e., will coincide with the 
parabola representing the section of zero curvature. Such a foliation is rather 
ugly, since several values of the t coordinate will correspond to the same space- 
time point. This is why the choice k ( t )  = - t is in fact the only reasonable one 
to describe the change from positive to negative spatial curvature [the opposite 
change would be described with k ( t )  = +t] .  

w The Geomet ry  o f  the  3-Spaces t = cons t  in the Vicinity o f t  = top 

We shall now show that the Stephani Universe shares many qualitative fea- 
tures with the de Sitter space-time foliated as in the previous section. For ease 
of discussion we will deal with another special case: the spherically symmetric 
space-time which results from (1)-(4) on setting Xo ,Yo, Zo const, and then 
transforming the constants away by a choice of coordinates. We shall then 
change to spherical coordinates in which 

R 2 ( t )  [dr 2 + r2(dO 2 + sin ~ 0 d r  ds2 = D2 dt2 V ~ (t, r) (18) 

V = 1 + �88 k ( t )  r 2 (19) 
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the equations (3) and (4) being still valid. The solution (18), (19) is a special 

case o f  those considered by  Kustaanheimo and Qvist [15] (quotat ion after 

[16]).  
Let us consider the family of  the radial lines (0, 4~) = const emanating from 

the center of  symmetry  r = 0 in an arbitrary spacelike section t = to. The length 
of  the radial line from the point  r = 0 to the point  r = ro is equal to 

fo r~ R(to) dr l(to) = V(to,r) 

2R(to)[k(to)]-1/2 arctan {1 [k(to)]  x/2 ro} ee--flc i l k ( t o )  > 0  (20) 

~roR(to)~fly  if  k ( to )  = 0 (21) 
/ 
| R(to) 1 + 1 [ [k( to)[]  1/2 ro clef 

- - - -  In . . . . . . . .  l o 
~ [ I  k ( to ) l ]  ,/2 1 - �89 [ [k( to) l ]  1/2 ro 

i f k ( t o ) < 0 .  (22) P 

The solution (18), (19) is now seen to share the following properties with 

the de Sitter space-time of  Section 3. 

Theorem 4.1. Every section t = to with k(to) > 0 is, as a three-dimensional 
Riemannian space, extendible to a 3-sphere, and so is of  finite volume. 

Proof. With t = to and k(to) > 0 equation (18) represents a space in which 
the r lines are geodesics. The geodesic distance from r = 0 to r = ro within the 
space is a C = function of  ro [equation (20)] for 0 ~< ro ~< % and so the space 
can be extended to the whole range 0 ~< r ~< ,,~ even if there are space-time 
singularities at some values of  r at t = to. The subspace r -+ ~ in the space-time 
is in general a single line on which t is the parameter;  see (18), (19), and (3) (the 
line may degenerate to a point  with unsuitable choice of  k and R).  In any case, 
the intersection of  the subspace r ~ ,,~ with the subspace t = to is a single point.  
Thus the completed space t = to will have the topology of  a 3-sphere. It has also 
the metric of  a 3-sphere with r being the stereographic coordinate.  �9 

Theorem 4.2. Every section t = to with k(to) = 0 is extendible to the geode- 
sically complete space R 3 . 

Proof. Every geodesic of  the space t = to which starts at r = 0 can be con- 
tinued to infinite values of  r. No identifications of  points of  the space at finite 
values of  r are allowed since this would introduce discontinuities in pressure 
[see equation (6)] .  But r ~ ~o is at an infinite geodesic distance from r = 0 
[equation (20)] and the space is intrinsically flat. Thus the only allowable ex- 
tension is R a . �9 

Theorem 4.3. Every section t = to with k(to) < 0 is extendible to a space of  
infinite volume, but  even so extended it does not  intersect some matter  flow 
lines. 
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Proof. The geodesic distance lop from r = 0 to r = ro within the space is a 

C "~ function of  ro only if 0 ~< ro < rB (to) de__f 2/[k(to)[112. Again, no identi- 
fications o f  points are allowed, but the geodesic escapes to infinity already at 
ro -+ rB. Thus the matter flow lines given by r />  rB (to) do not intersect that 
connected component of  the completed t = to space which contains r = 0. For 
the completion o f  the proof  see next theorem. 

Theorem 4.4. Every section t = to with k( to)  < 0 consists actually of  two 
disjoint sheets, none of  which contains the points r = r B (to). 

Proof. This is simultaneously a continuation o f  the proof  of  Theorem 4.3. 
Although we run out to infinity (/op -+ oo) by approaching r = rB (to) from 
below, the metric (18) and curvature determined by (5), (6) are well behaved 
also for r > r a (to) [except possibly for those points where (O/Ot) (V/R) = O-  
see Sections 5 and 6] .  [Recall: (5), (6) determine the curvature since the Weyl 
tensor = 0.] The metric and curvature determine only V 2 , not V itself. In (22) 
we have taken (V 2)1/2 = 1 - �88 [ k [ r ~, but for r > r B (where V < 0) the appro- 
priate expression is (V 2)1/2 = �88 [k[r 2 _ 1. The geodesic distance between the 
points (to, r l ,  0, ~) and (to, r2, O, ~) where r B (t0) < r l ,  r2 < oo is then 

1 (1 r 2 - r B  r a - r B )  
112 = ~-rB n - -  In (23) 

r2 + rs r~ +re 

This is well defined for r2 -> 0% but 112 -+ oo ifr~ ~ r B . Thus the sheet of  the 
space t = to which contains r = oo (let us call it the "far sheet" again) does not 
contain the points for which r -+ r B . Note that also in this case r ~oo is in general 
a single line in the space-time and always a single point in the space t = to. �9 

For future reference it should be noted that the values r = re(t  ) are zeros o f  
the function V. 

Note that the far sheet is, as a three-dimensional Riemannian space, isomet- 
ric to the near sheet. The isometry transformation is r = 4/kr'  with r '  as the new 
r coordinate. In the FRW models, this is an isometry of  the space-time itself, and 
so by performing it we simply obtain another copy of  the same space-time. Not 
so here: as seen from (1) and (6) the metric component goo and the pressure are 
not invariant under this transformation. 

w The Foliation o f  the Space-Time 

We will still consider the spherically symmetric subcase. The lapse of  the 
proper time between the hypersurfaces t = tl and t = t2 > tl along the line 
(r, 0, q~) = (to, 0o, ~o) is given by 

s g [, sx2 (r0) = -  D(t,  ro)d t  =-  F( t )  n dt 
, t  

(24) 
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If the function I ( t ,  r) def [ln (V/R)] ,  t has a constant sign along the t line in the 

interval tx ~< t <~ h ,  and F( t )  is continuous in that  interval, then by  applying the 

mean-value theorem to (24) we obtain 

[ V(t2, r) lR ( tx) 
s12 (r) = - F ( t  m (r)) in (25) 

I V(tl, r)[R (t2) 
where tl ~ tm (r) <<. t2. This equation allows to establish a few more properties 
of  the Stephani space-time which it shares with the de Sitter solution o f  Sec- 
t ion 3. 

Theorem 5.1. Let k ( h  ) < O, k ( h  ) > k(t2 ), ra < rB (t2) = 2 / [ -k ( t2  )] 1/2 
and let [ t2 - t l  [ and Jr1 - rB (h ) [  be sufficiently small so that  I( t ,  r) has a con- 
stant sign for t~ ~< t ~< t2 and r~ <~ r ~< r B (t2). Then s12 (r) -> ~o as r ~ rB (t2), 
i.e., the infinity o f  the near sheet of  the space t = h is also infinitely far into the 
future from any other space t = const along the flow line r = rB ( h ) .  

Proof. Under the assumptions stated 0 < V(tx,  r) < oo for rl <~ r <<. r B ( h ) ,  
but V(t2 , r) -+ 0 as r ~ r B (t2 ). Thus sl2 (r) -> oo there. [] 

Theorem 5.2. Let k( t2)  = O, k ( t l )  > 0, and let It2 - t l  [ be sufficiently small 
so that  such r L exists that  I ( t ,  r) has a constant sign for rz, < r < oo and t l  <~ 
t ~< h .  Then sa2(r) -~ ~o as r ~ 0% i.e., the infinity o f  the flat space t = h is in- 
finitely far to the future from any space t = t~ < t2 along the matter  flow line 
r --> oo, 

Proof. We have V(t2, r) - 1 while V(ta, r ) />  1 for all r, and V(t l ,  r) -+ oo as 
p --> oo. [] 

Theorem 5.3. Let k ( t )  be continuous and bounded in the range t1 <<. t ~ ty ,  
become negative somewhere in that range, take its local minimum in [t I, ty] at 
t = t M, and its local maximum at t = TM, tl  <<- TM < tM <<- ty .  Then there exist 
such matter  flow lines r = r0 on which a finite value of  the t coordinate corre- 
sponds to future timelike infinity,  s12 ( r o ) ~  oo 

Proof  Obviously k( tM) < 0. Let 2/[ k(tM)[~/2 < ro and simultaneously 
ro < 2/[ k(TM )[112 if  k(TM) < 0 or ro < oo if k(TM) >10. Then, from continui ty 
and boundedness of  k( t )  it follows that  such to exists at which k( to)  < 0 and 
ro = 2/[k(to)[ 112 , TM <<- to <~ tM. Let us choose t l  close enough to to so that  
I( t ,  ro) has a constant sign for t l  ~< t ~< to,  and (25) applies. Let us calculate (25) 
along the flow line r = ro,  and let us increase t2 starting from tz = t~ if t~ ~> t I 
or from t2 = t i  otherwise. Then s~2(ro) -+ +oo as t2 -> to. " 

Theorem 5.4. Let the notat ions of  Theorem 5.3 hold,  but  let t I <<. tM 
TM <~ tF. Then along some flow lines r = ro a finite value of  t corresponds to 
past t imelike infinity,  s12 (ro ) -> ~o 

Proof  The following adaptat ions in the proof  of  Theorem 5.3 must be 
made: 
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(1) This t ime t M <<. to <<. TM. 
(2) Choose t2 close enough to to so that I ( t ,  ro) has a constant sign for 

to <~ t <~ t2 . 
(3) Let us decrease t l  starting from t l  = t2 if  t2 ~< tF  or else from t2 = tF. 
(4) s12(ro)-+ - w a s  t l  - to.  " 
Let us recall that  in the de Sitter space-time, represented as in Section 3, the 

slices t = const all met in the point r = 0 which was a singularity of  the foliation. 
Can different t = const spaces meet (i.e., intersect or be mutually tangent) in the 
general case? 

The hypersurfaces t = t l  and t = t2 meet at r = r c i fs12(rc) = 0. Unfortu- 
nately,  the mean-value theorem becomes inapplicable precisely in this case, and 
so there is no way to calculate the zeros of  s~2 (r) in general. However, we can 
investigate when two infinitesimally close hypersurfaces t = const meet. This 
happens when ds = 0 along a mat ter  world line (which is known to be timelike) 
at r = r c .  We can see from (1) and (3) that this happens at the zeros o f  the func- 
t ion (O/Ot) (V/R).  At these zeros, as seen from (6), the pressure becomes infi- 
nite, and so a curvature singularity occurs, Thus two spacelike slices having a 
common point  is a t ruly singular event. 

There are two ways to avoid such a singularity: (1) To let the zeros of  
(O/at) (V/R)  coincide with the zeros o f  V, so that  the factors responsible for 
the singularity cancel out  in (6). (2) Not to let (~/at) (V/R)  have zeros at all. 
In the first case a FRW model is obtained,  so this is not  an interesting way out 
of  the trouble. The second case will be discussed in Section 6. 

w Properties o f  Matter 

In this section we discuss the general case (with no symmetry)  at the 
beginning. 

The moments  when the Universe opens or closes are characterized by 

k( top)  = k(tc)  = O. 

Some scalars of  the mat ter  flow do not  "feel" these moments  as any special 
events, e.g., 0 = u ~ ;~ = - 3/F(t)  or Ke = 3 C 2 (t)  can behave there as regularly as 
one likes. The acceleration vector field has its scalar equal to 

[2 .2 = _ g ~ y u ~  = R ~ ~ ~ :k2;4- 2kki~oj(Xj- Xoi) v 
]=1 

+ k2(xi- Xoj) ~ + k~k(xj- Xoj) 2 ~ (x~- Xo3~ot 
l=1 

- k k /ZR 2 ~ �9 ( x j -  Xoj)JCoj 

(26) 

(27) 
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From this it can be seen that a s becomes infinite at the zeros of  (~/~t)  (V /R) ,  

i.e., precisely where pressure has its singularity [see (6)],  but is finite everywhere 
else, including xi  -+ ~ .  

In the spherically symmetric case, where Xoj are constant, the matter flow 
line [xi] = r is a geodesic, just as the line x i = Xoi. 

Let us denote the zeros of  the function V by x i  = Ni ( t ) .  At x i = N i we have 
gp = - 3C 2 = - ge < 0. This happens with k < 0 (with k > 0, Vhas no zeros; we 
will discuss that case further). The negative values o f p  can then be avoided in 
two ways: 

1. Letting (~/St)  ( V / R )  have its zeros where V does. This occurs only with 
k = const, i.e., only in the classical FRW models. 

2. Matching the Stephani solution to an empty-space solution so that the 
matter-filled region does not reach up to x i = Ni(t)  in any hypersurface. This 
matching will not be discussed in this paper. Let us only observe that the ex- 
terior solution cannot belong to the family (1)-(6) ,  just because (1)-(6)  is con- 
formally fiat: each Ricci-flat solution of  that family would be the Minkowski 
space which cannot be reasonably expected to be the exterior metric. However, 
one necessary condition for the existence of  an exterior solution is fulfilled 
here: on the boundary of  the Stephani space-time one should have p = 0 along 
a famiy of  matter lines, e.g., p = 0 for x i = Xsi. For any constant value Of Xsi the 
equation p (t, xsi  ) = 0 is just a single ordinary differential equation connecting 
the functions C, k,  R ,  Xoi as seen from (6). Thus p = 0 can be guaranteed at any 
constant values o f x  i for all t. 

The conditions for p to be positive and finite everywhere we shall again dis- 
cuss in the spherically symmetric subcase. 

When k ( t o )  > 0, the pressure can behave regularly throughout the hyper- 
surface t = to, as can be seen from (6). At r = 0 it equals 

~p (t, O) = - 3 C 2 - 2 CCR/I~, (28) 

and is nonnegative if 

_ 2 C R / C I ~ / >  1 (29) 3 

If the function (b/~t)  ( V / R )  has no zeros, then pressure remains finite for all r. 
That happens if 

k (Rk - Rk) < 0. (30) 

The condition (29) must be fulfilled also in a FRW model. With k > 0, (30) is 
fulfilled when k = const, and so will be fulfilled if the derivative o f  k is suffi- 
ciently small for all t. 

With (29) and (30) fulfilled, the condition p / >  0 is equivalent to 

def 
L = - �88 C2R(I~R - k l ) )  + �89 k C C R R  < 0 (31) 

Equation (29) implies that 

L <~ - -~ C21~Rt~ (32) 
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Thus the sufficient (but not necessary) condition for (31) to hold is 

/~R/~ ~> 0. (33) 

It is now clear that with k < 0, (30) and (33) cannot hold simultaneously, 
i.e., p is not guaranteed to be nonengative everywhere. With k > 0 it can only 
be said that (30) and (33) are not contradictory, and are automatically fulfilled 
when k = const. It is, however, a separate question whether (29), (30), and (33) 
can hold simultaneously over long ranges of t. This question will be addressed in 
a separate paper. 

w Conclusions 

From the foregoing considerations we can conclude the following: 
1. In the spherically symmetric case [and also in the general case, if the 

functions Xo(t),yo(t), and Zo(t) are sufficiently small everywhere] there will 
exist a world tube around the central line r = 0 (resp. x = y = z = 0) in which 
none of the exotic effects (like matter flow lines slipping out of the space or 
pressure becoming negative or unbounded) will occur. The region outside the 
tube can be removed from the space-time by matching the Stephani solution 
to an empty space solution which still remains to be found (in the spherically 
symmetric subcase it is just the Schwarzschild solution). 

2. One can also consider such Stephani models in which the function k(t) 
has a fixed sign forever. If, moreover, k > 0, then each space t = const will inter- 
sect all matter flow lines, and the evolution of such an Universe will be qual- 
itatively very similar to the evolution of the closed FRW Universe, but neverthe- 
less the model will have a more complicated geometry which still deserves 
consideration. 

To decide whether the Stephani solution qualifies as a model of the observed 
Universe is a task for further works. It must be stressed however that the clas- 
sical FRW models are contained in it as special cases. Thus by choosing the 
arbitrary functions appropriately one can make the predictions of the Stephani 
model arbitrarily close to the predictions of the FRW models. Consequently, no 
astronomical observations made so far can rule out the possibility that our phys- 
ical Universe is of such a more general type: their continuing low precision 
and dependence on a priori assumptions leave enough room for this generaliza- 
tion. The reason for which only the FRW solutions were used as cosmological 
models up to now is in the theory, not in its observational basis. The Stephani 
model was ruled out at the very start when the "cosmological principle," i.e., 
homogeneity of the space-time, was taken as an axiom. Indeed, as indicated by 
Ellis [17], this is a philosophical principle with an insufficient observational 
foundation. To rule out, or admit, the Stephani solution as a cosmological 
model one has to analyze the qualitative differences between the Stephani model 
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and the FRW models, and decide whether they are in agreement with observa- 
tions. For instance, one might try to look for physical consequences o f  the 
change of  sign o f  curvature, or of  the singularity which appears with negative 
curvature. This remains to be done. 
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