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SYMMETRIES OF THE RIEMANN TENSOR()
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1. Symmetries of a peculiar Newtonian field.
There exists a Newtonian gravitational field [1] which has a kind of in-
ner symmetry. Let us display it in the coordinates (rs 8, ¢) given by

X = (r2 + a2)1/zsin6 cos¢, y = (r2 + a2)1/2

sin® sin¢, z = r cosb, (1)
. where x, y, z are cartesian coordinates and a = const. The r = const surfa-
ces are confocal ellipsoids of revolution with common eccentricity a,

-G a
Ve(r) = 3 arctan < r (2)
is the potential outside the source, where M = 4n/"f(r)dr is the mass of the
o - :

source, £(r) is an arbitrary function, p(r,0) = £(r)/(z° + a2cosze) is the -
density distribution in the source with outer surface at r = s and

r , r

v;(z) = 4nG/° 'dr = /% £(r**)dr’ (3)

O r +a O

is the potential inside the source (for details see [il). Let us consider
the following motions of the space: 1. Each point retains its previous va-
lue of the r-coordinate, but is moved parallel to the (y,z) plane so that
(a) Points with x = o move by‘Ae counterclockwise (i.e. towards smaller 6
if ¢ = o,"towéfﬁs bigger 6 if ¢ = =), (b) Points with x # o (which move on
ellipses similar to the tx =0, r =.const} é]]ipse) are displaced between
points corresponding to those in (a) under the simi]arity transformation;

2. An analogous motion parallel to the (x, z) plane. These motions reduce - %
to rotations around the x and y axes, respectively, when a = o. They are ob=
viously not symmetry transformations of the space. However, their generators
in the (zr,6,¢) coordinates; given by ]
Jyz = sin¢ g§-+ cos¢ cote %E" J ., = COS9 %3-' sing cote %E" ‘ (4)
leave the potentials (2) and (3) invariant. Moreover, they are formally iden-
tical to generators of rotations expressed in spherical coordinates. This is
a hint that similar things may happen in general relativity where the geome-
trical meaning of coordinates is never specified in advance.

2. Why the Riemann tensor?

The gravitational field manifests itself in the relativity theory thrdugh
the curvature tensor. It is thus logical to look for analogies to the situa-




tion described above by investigating the cases where the Riemann tensor is
invariant under a larger group than the corresponding metric tensor. Such a
project was proposed long ago by Katzin, Levine and Davis [2], and followed
by McIntosh et.al. in a series of papers [3-5]. Unfortunately, in most cases
these curvature collineations appeared to be identical with special confor-

mal motions where ikg g = q>gmB with ¢;uv =0 [5]
However, the form of the equation i{Riemann tensor)= o0 depends on the

positions of indices. In [? é} on]y,fk = 0 was investigated. Let us take

Byd
5£Ra8 = 0 instead.
3. Symmetries of R“BYG.
Let r*F _ be any tensor having all the indicial symmetr1es of the R1emann
) g
tensor (ROLBY(S Bays’ and so on). Then:
i?asya = O for any arbitrary vector field k if and only if
kaB a B a B . ‘ . . .
R 6 = R(S§ YG s " S 66 Y) with R = const, i.e. if and only if (5)
ROl'By(S represents a space of constant curvature.

is in this case a subgroup

aB
Y¥§

The group of curvature collineations of r® By

of conformal motions. This example shows that the collineations of R may

be much more numerous than those of R" Bys”
A modificg?}on of (5) holds when a Riemannian space v, contains subspaces

of constant curvature S, - Suppose v, can be,orthogonally decomposed into a

congruence of s whose symmetry group is also a symmetry (sub-)group of the

whole Ve Let k¥ be a tangent vector field on S - Then:

@ onv. ~ (6)

Any k generates a curvature collineation of R 8 N

aB
Y$
spacetime (congruence of 52) must contain the subgroup generated by

k = F(9, ¢) + G(9,9) 3¢ s
where (6,¢) are spherical coordinates and (F,G) are arbitrary functions.

4. Some examples.

Here are the generators'of fRaB 5
plained symbols denote arbitrar§ fuzctions.

a) The Schwarzschi]d solution (in standard spherical coordinates):
k = F(t,r) — + G(0,9¢) — + H(9,9)

In particular, the collineations of R in a spherically symmetric

(7)

= o0 for four simple solutions. Unex-

(8)

¢
b) The Lanczos so]ut1on £6]:
ds® = dt° + 2Cr dt dé + (C2r2— a)d¢2 - (1/4e%)ar? - T a2,
d
= (At + D) 35 * ‘(4¢ + B) ¢ + K(z) az ’ (9)

where a, B, ¢, D, A =const, a =C'r + A + re T, The symmetry group of this
metric consists of translations in the t, ¢ and z directions.



c) The Nariai solution [7-8]:
as’ = p2dt2 - 1% (ar 2/r2 + ae’ + sin2e as?)

k = F(t,r) —— + G(t,r) — + H(e ¢) =— + K(6,9) (10)

¢ P
where L = const, p = a(t)cos(log E’ + b(t)sin(logz?. Note that this solution
is a cartesian product of the (t,r) and (6,¢) spaces, both of which are of
constant curvature, and see how it fits into theorem (6).

d) The Robertson-Halker metrics (with x, y, z as coordinates in 55):

9 9 3 ‘
= F(x,Y,2) Pyl G(x,y,2) 5§-+ H(x,y,z) Sz (11)
o

5. The "spherically symmetric r YS:

In view of what was said before it would be interesting to know what me-

trics can generate such R

ve which are invariant with respect to the gene-
rators (4). The equations £r*

= 0 yield then the solutions:
x Y8

o1 03 02 03 02 13 12 13 12 23
Ko7 Bos ™R 02r By SR 4pr B3 S8 g Bgs = Ry B g
are all arbitrary functions of r. : ‘
o1 02 02 12 12
237 B o3 R 13’ R o037 B 43
03 02 03 02 2. 13

R . 12 ., 2
R 02 =~ R 03/ sin 6, R 12 ==R 13/51n 6, R 02 =~ R 03/51n 0,

R - - R12 /sinze, R - f(r), where f(r) arbitrary.

12 o1

The corresponding metrics must fulfil g, ok pyd] = 0. This is a formidable

set of a]gebra1c equations which has 26 sets of {g

R are all of the form (function of r) e sin6

B' R°LB } as solutions
other than the Erivial ones (singular ¢ B or a space of constant curvature).
The solutions are too large to be displayed here. From among them such me- -
trics must be chosen which generate the corresponding r* through the
Christoffel symbols. The work is not yet finished.
This work was aided by the algebraic computer program ORTOCARTAN[Q].
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