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Abstract

When discussing spherically symmetric gravitationél
fields one usually assumes that the whole spacetime is
invariant under the O(3)=-group of transformations. In this
paper; the Einstein field equations are investigated under
the weaker assumption that only the J=spaces t=const aﬁe
O(B)symmetric. The following further assumptions are made:
Te Thg t-~lines are orthogonal to the spaces t=const, 2.The
- souxrce in‘the field equations is a perfect fluid, or dust,
or the j&wterm, or the empty spaces 3. With respect to thé ‘
center of symmetry the fluid source megy move only radially
if at all. Under these assumptions one solution with a per-
fect fluild sourcey found previocusly by Stephani, is recove-
ved and interpreted geometrically, and it is shown that it
is the sole solution which is not spherically symmetric in
the traditional sense; The paper ends with a general discus=~-
sion of cosmological models Whése Z=-gpaces t=const are the
ssme as in the Robertson-Walker models. No new solutions
'4Were eXplicitly found, but it is shown that such modelé

exist in which the sign of curvature is not fixed in time.



1; Introduction

When discussing spherically symnetric gravitationai
fields in the theory of general relativity one usually'
assumes at the very outset that the whole spacetime is sphe-~
rically symmetric, ic€e that the metric is invariant under
the 0(3) .group of transformstions of coordinatess This
. assumptién seens more restrictive.than necessary, however,
beczuse what one has in mind‘while doing observations is
only the geometry of the instantaneous 3-spaces t=const
whatever the choice of time is. The geometry of the sp?cetime
cen then be recognized on;y by indirect investigations, and
it might be interesting to see Whéﬁ conclusions can be drawn
if we\ésSume that only each of the 3-spaces t=const is .
O(B)m symﬁetric while for the whole spacetime it is not
necéssarily 80% |
\This_prdbleﬁ hes a simple analogy in the geometry of
o-dimensional surfaces, where the O0(3) transformations have
their analogs in the rotations around a fixed axiss Suppdse
you take a family of circles; which are all axially symmetric
curves, and you stack them to foxm a 2=dimensional surface.
The éuestion ig: is the surface obtained in this way necess-
Agrily axially symmetric? One thinks first of a cylinder, a
v qone; a hjperboloid, a plane, a sphercid or sphere; all of
which are axially syﬁﬁetric; The less trivial case is a
}to?us. It can be obtained by stringing identical dircles onto
anothér circle, orthogonal to their planes. Although the
torus is axislly symmetric, its axis of symmefxry does not cciﬁf
cide With,the axes of symmetry of the small Qircles forming it.
Ihdeedg it is now easy to imagine the ﬁorus being bent, so that

the line joining the centers of the small circles becomes Wavys
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still being orthogonal to each circle’s plane in the point
where they cross. Clearly, such a wavy torus haé no symmetry,
ithough it is still formed by stringing the circles onto a lines
Fven more examples of ngnsymmetrié surfgces can be imagined

if one allows that the circles are stringed onto a liné which
is not_0rthqgonal to their planes at the point Qf crossing;
fFQr e?ample, identiéal ¢ricles stringed onto a straight line
- whlch is inclined to their planes will form an elliptical
c¢ylinder which has quite a different Qymmetrye )

in this paper I wanﬁ to'imagine a spacetime as made of

O\ ~gymmetric deimensionél spacelike hypersurfaces stringed
onto a timelike line orthogonél to them all, and to investi=-
gate tpe proéerties of such a spacetime if the Einstein field
eéuations'are fulfilleds We shall also assumé that the velo-
city field 'of matter, e (if any matter is present), has

- only the ut and u’ components, iee. moves only radlallf if
‘at all with respect to the line aclnlng the centers of symmetry
of the 3-spaces. This assumption is justified by the fact that
ﬁransversal motions of matter could be easily revealed by any
observer, and would thus constitute a too-obvious evidence fox
the lack of ordinary spherical symmetry in the spacetime. To
the author, it seems more interesting to 1nvestlg te such
spacetimes with spherically symmetric hypersurfaces which axre
‘not too'eésily distinguished from ordinary spherically symﬁem
tric spacetimes, and thus might~potentially serve aé genera=-
lized cosmological modelss However, one could go on without
the zssumption of purely radial motions and see what foilows.';
Thls problem still awaits investigations. |

The most general source in the field equatlons con81aered

here will be a perfect “Plu,.“g whose special cases (in the
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mathematical sense) are: dust-like matter (pressure = 0 ),
the ,fxeterm ("pressure" = const def A ¥ 05 ‘"energy
- density" = = f&), and the pure empty space (pressure energy
density = O)e _ -

In the case of the fimterm and pure empty space no
ncn»spherical soluticns were found, 1°eo the spacetimes con=-
t sidered here are forced by the field equations to bg spheri-
cally symmetric in the wéll,knownetraditional senses However,
in ths case of a nontrivial perféct fluid one solution is
found which is not sphericaily symmetric as a spacetime; The
reason of its nonspherlclty is found to be the curvature of
the lines onto which the Buspaces are stringed (see section 5)e
It is .the solution found in 1967 by Stephani [1]

This result can be explained intuitively in another way.v
A spacetime inside matter is described by a nonzero energy-
momentum tensor which can be defined by its invariants (eaga
projecticns onto fixed directions). If the spacetime 1s not
fully spherlcally symmetric {in the traditional sense)y then
at least one of the invariants should be not=spherically =-
symmetric in the ordinary senses This invariant, then, clear%
1y indicates the nonsphericity of the spacetime. The non-
trivial fact shown in this paper is that such a solution
existse In the empty space, on the other hand; no material
-inVarlants are available, and so the nonsnherlclty is not
~easy to be revealed. 1In fact, as the paper shows, it cannot
be revealed at ali: the spacetime is then truly spherically.
symmetrics,

_ The physical difference between the spacetime which is
'0(5)wsymmetric as a whole and one that has only O(3)-sym~

metric hypersurfaces can be described in the following way.
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If we are given the %=gpaces = const without any device to
measure the time in different points, then we can reveal only
.'the spherical symmetry of each 3~space by purely geometrical
measurements. Ify; in addition, we attach a clock to each
point of the space, then we can say: the spacetime considered
here is sphericallj symnetric as a whole if its 3=spaces
tt = const are sphericaliy symmetric and all the cloks placed
- on one sphere go at the séme rate:[2] o The solution from
se¢e> fLits this definitione. | o -

The plan of the paper is as follows. Tn sec.? the
problem is posed by writing a metric form concordant with sll
our assumptionse In sec. 3 we discuss the case which is ana-
logous. to the solution of Nariai [5] of ordinary spherical
symmetry9 and in fact we only recover the Narisi’s solutlona
In seceld we discuss the case strictly analogous to the sta;é
dard spheriCally"symmetrié spacetime and we f£ind one non tra-
ditional solubtion: the one of Stephani qu’e The geometricsl
properties of the Stephani®s solution are investigated in -
Setede In section 6 we discuss the most general spacetimeobeyw
ing all the aforementioned assumptions and we show that sections ?
~and 4 actually exhausted the problem.

The final sections of the paper are devoted to an ang=
logous problem with homogeneity. Here it is assumed that the
43¥spéceé t = const are homogeneocus with Tespect fo a 3=para-
meter group acting transitively, but the Whole spacetime is not
necessarily invariant with respect to this gIroupe Tﬁe problem
here is considerably more complicatedy, so it is assumed for
simplicity that the 3=-spaces are spherically symmetric in addi—;
tion to being homogeneous, that they are stringed onto a line

——

which is orthogonal to them all, and, as before, that matter
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displays no rangversal motions to the distinguished observerse

One class of sclutions, found previously by Stephani
L’ig, was reobtaineds Another class was also_investigated,
'in which no new solutions were found ezpiicitlye In'both
classes the geometry of each of ﬁhe subspaces _t = const is
the ‘same as in the ReW - metrics, but the curvature of the
5-spaces t= const is varying in time in a different way,so
that it can change its signe N 4 B

The present paper is one of the possible specifications
ci the idea of CsBe<Collins [41 who proposed to 1nvegt3gaue
pmcetlmes huVlng uubspaces with deflnlce symmetrj groupse
This line of research is meant bo replace the nearly exploi-
ted line of investigating spacetimes which had definite sym=
metries in total. In fact, the present paper was motivatcd
by the recent besutiful and enlightening crltlclsm of stan-
dard cosmology by G.F.R.Ellis, expressed parﬁ cularly in L)J

The caWOulatlons for this paper were carried out with
use of the sywbolic formula - manipulation computer system
ORTOCARTAN E69‘7] e With it, calculating the left-—hand side
of the Einstein field equations, a traditional nightmare of
every relativist, has become a leisure time, Indeed, time
has come to transfer this work totally to computers and save

many people large parts of their lives.

2o Definition and statement of the purpose

'As‘stated in the introduction we shall deal with such
spacetimes, whose subspaces + = const are all spherically
:symmetric,in the normal sense. -Thus, it should be possible
to choose the coordinates in the spacetime so that in every

Space G = const the metric form is:
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as,® = F(r) a4 Cry (a8 + s1n2 a¢ %), (2. 4)
“where q’fr) and S (r) are arbitrary functions of the coordi-
nate L8j]g implicitly understood to be the values, at a
fixed b, of some arbitrary functions of two variables, zﬁ%tgr)
and gﬁ%t,r) respectively. -

. The most general suoh spdcetﬁme has the metrwc Iorm~
_d52 2(t T fs-gge )du + 2&,‘(1: r, u;({})dt dr + 2ek (b ,rgﬁg)dtd&

+ 294.3(1, s ¥ 5 )dt dg - fa"g(t T‘}dr - §2(t,my (a2 +

- - | + sin® ﬁ’dui) ) s  (262)

Wheze DgéxqgiﬁQ and C&B gre arbitrary functions of four
varigbles. TFor simplicitygAjust to_gain an insight into a

new kind of geometry which seems not to have‘been considered
before [9i19 we shall assume throughout the paper that the
spaces (2,1} form the spacetime (202) by being stringgd qnto
- a timelike congruence which is orthogonal to them all, i.e.

the t=lines are orthogonal to the spaces t = const. Conse—
: éuently'we assume that: ‘ .
A 4 =95 = oy =0, (243)
We shall also denotes

def (b,
'{f ::e/&(s),

(264)

The paper will be mostly devoted to the éuestion: what
kind of a source can generabte the metric \2 2) = (243) through
the Einstein field eéuations if fhe metric-is‘nqt to be sphe-
rically symmetric in the traditional sense (i.e¢ the funct-
ion D is to depend on at least one of the varisbles if and % B

The components. of the Ricei and BEinstein tensors, re= ;
ferred to in the paper; will be all with respect to the sim-
plest orthonormal tetrad of differential forms connected with

2y

(€e2) = (23).
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3 The Nariai-like case

&

In standard textbooks one usually chooses one of the

coordinates (b,r) so that the function &(b,r) in (2.2)

assumes a pre-=specified shape, Clearly9 this is impossible

when g = conSﬁ; and we shall consiéer this case firste Thus

we denote g = L and consider the field equations for the

- metrics _‘ | ,

d52 = (D dt)g 5_(e/‘*dr)2 - {1d & ~)2 = (L sin& d?}ae (3.1
. If, as we assumed, the source in the Tield eéuations is

no mgfe general than a perfect fluid,‘then the energy-momentum

tensor is of the form:

Tij = (& +7D ) uiuj - pgij s _ (52)
where indices refe: to the orthonormal tetfada With our |
another sssumption, that the velocity £ield may have only the
ut and uv components, the Einstein fieid equaticﬁs iwply

for the Ricci tensor:

However, in the case of (3.1), Ryq = 0 identically what

means that the fluld must be moving aleng the t=lines, ieee
x

U = 0, The equations 302 = RO3 ? O sagy, respectively:

- ;,G D,y /1D° = 0, : , (3eh)
/uz,jt .D“%) ./LDE .sin Y = 0. | |

| Consgiuently, either D,y = D,%’ = 0, or /U%t = 0. The
first case leads to an ordinary spherically symmetric solubtione.
Moreover, if D,y :i_ng = 0y then R,, = Ry5 = T2 const,
ROO + Rqq = 0, and so the source may only be the f\ - term,
;fL-z L”?; This case was shoﬁn in [8] to 1éad to the sélution'

of Nariai<}TBT s and so we can expect no new result along this
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line. Tet us recall tha

ture of the cartesian product of a hyperboleid by a sphere;and

ig precisely the solution that is lost if one forgets to con-

sider separately the case when the function § in (242} 1is

constant. Unfortumately, this is done in most textbooks. The

metric of the Nariai®s solution has the form:

as = [a(t)'cos(ln % ) + B(%t) sin (in % )]2 at® +
- La(c‘mz/r2 + da@’z + Sil?lzﬁ'd‘{2 Y5 ) (365)

where g and b are arbitrary functions of times Since [\ = T

the soAlution has no proper limit Z\.“’E’ O»'c!
When we follow the other case in (594} we have from

R,§2 = IiL,lB = 0O

ESI‘$ = D’I‘({; = O | ‘ : (546)
Consequently: _

where F,] and Fz sre new unknown functions. Now, from

323 = 0 we have:

- D;M s COUE Dyg =0 (3:8)

which means ¥, = ¥j (-t“.e ysin% ¢+ Fy(t, ¥ ). Next, from
E»,B = Ryp = 0 we have:

13933-:]),,{(\? /sin“d = cot ¥ Dyy =0 (3D

which yields :

I):: Fz(t,;r) + A(t)sinﬁ cos{ + B(t)sin& sinug +

_ -+ G(t) cos v s ’ (3:10)
The equation R,y = Ry = O now yields e/ (Dypp= PopDsp)

the solution of Nariail has the struc-

-

) 2@_ 1 Qo - - o ° ’
%- e (D = Di,‘\g{‘,/b;n o= coty Do = 0, and this results in

A=B= G =0, D= Fé("r,,r)‘;. So finally we could not escape

§
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the full spherical symmetry, and we have reobtained the
. solution of Narial [5] heres:

5 The S“hwarzschildmlike case

From now on we shall consider only such metrics (2.2)-
{2:3) in which é is pot constants In this section we shall
imfestl aue the (abparentlv) specisl case when the function %
may be chosen to ‘be the r-coordinates TIn the si:andard sphe=
rically svmmetric case the necessary and sufficient comlt«-
ion for this was the gradlent of & being a spauellke vector.
There, howevers we could employ transformations nixing &
—with. v, dees t = L(t*, r*), ¥ = (6%, r’)e Mot so heree :‘i.f
D depends on J or ¢ s then to preserve the form (2.;2)

~

with o’\_.' = 0 we may employ only the non-mixing transfermat-
ions T = t(t )g o= (T )e Cansequentm, g mey be chosen
ss the new coordinate =x only when g-» g( ) (isee g, 0y
in the old coordinatess
The equations R » = 305 - 0 sre here nearly identical-
with (3e4) (only = replaces L) and so pose the seme dim=
lemmas either we return to the well-investigated case of ordi~
nary spherical symmetrf; (see €efe E/IOI\)Q or }/L_éugt = 0. We
chall consider only the second casees Since however:
= 2/-»gt/ri_)e/b, ‘ (o)
we seerthat with Mg, s O we have R 4 = 0, and so 1f the
source is a perfect fluid,then 1t must move along the t—-liness
. ?11_6 equations 2R12 =,qu5 = 0 yield now:A
o2 Do .o O '
= (7D = D /x Be/dSlIl.v = O,
e L |
and so: .

S
P (i’if‘"i
! Y

y ® o+ BylbTye | (%a3)

ﬁ'&;
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The equaticns 32, = Rﬂj - R22 = 0 yield, respegtm
“ively, (3. 8) and ()e9)g and so:
D=1 ;ﬁ(t)s:mw cgoug‘ Bf“‘}qa.nﬁsn.nae + C(t}cesef:h—
+ Eg(t r). | (4l

- R, = ields:
Now ¢ qu R2 = 0 yields

A . 2
© %ﬂ% Dsr ’fbgr+ = )D9r+//igrb/r + D/r J +
+(D§3;f D)/r = 06 (4"/)
Substituting (4‘4) here we obtain the result that either

A=B=C=0

s OL3
T 1 : .
Aua:ms the fl st case is not interesting, being Jjust spne¢1~

cally symmetric, so we shall consider only (He0)e Then,

remembering that /&Lst = 0, we obtains
oM = 4 Kr® | (47}
where K = conste Still, we have one more equation result-

ing from (Le5Y:

w2pi. 1 _ o
© /ﬁ[% Pope * (fop 1) ?29é] = Oe (#38)
Tais hss the solutbion:

1/2

E(t‘(l + Kr® ) (4:9)
where E is an ax bwtrary an@ulOﬁ of ts The quantity s,
though, in general being an arbitrary function of by, if it is

not merc, may always be set equal to 1 Dby the ccordinate

<t

trdnsfo matlon gs(t)dt = Q' Therefore we shall assume that
g =1 or 8 = O: ' |

Disregerding the equ ablon of state, we have already
fulfilled all the equations for a perfect fluid., The remain-

] ~

-ing ones Just define the energy density and the pressuree When
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(4e9) and (4.4) are substituted into the Ricci tensor, then

. the only nonzero tetrad components appear to be:

R, = 3K (1 =5/D), (#+10)
qu = 322 = R53 = - 5K(1 “>8/3D)e
From here we obtain for the energy density & and the

.

pressure D3

wE = - 3K - - o (4611

’ 8 G . NP

where e = —p—— o Thus €& = const, and so the fiuvid is
- ¢

incompressible. Moreover, the metric corresponding to (410)
is confermally flat which altogether strongly resembles the
so - called interior Schwerzschild solution [11] . This
solution was found by Stephani [1] as one of the metrics which

can be iﬁbedded in a flat 5-=dimensional spaces

Se Geometrical prgperties of the Steﬁhaniﬁs sclqiion

Let us display the solution explicitly:

as? = pPat® - (1 + Kr‘?)“'" ar? - 32(632 + sin®vaes),

D= ::[ (I}')S'ln/v cosc{ + B(’G)Slnﬁ s:mxf-;: C(t)uos «z_]-z- (56'1‘);
E(t)(1 + Kr )4/2 + S '

s =1 or O.

We sée from (4.11) that the pressure differs from (= &)

(iecee from the cosmoloéical constant) by a term prbportionai

4

~to sy &nd so with s =0 the source of the metric (5.7)

reduces to the A - termg A = 3Ks Taen (591) seens at first

‘gight to be a highly nonsymmetric generalization of the de

Sitter soluvion [121& which results from (5.1) in its stan-

dard fromwhen A=B=C=s8=0, E="1 Hoﬁeverg as stg=

- ted gbove, the Veyl tensor Qf.(5aﬂ) is equal to ZEeIr0s
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Therefore, if in addition the Ricci tensor of (5.71)happens
to be equal to the A - term, the spacetime becomes Just a
space of constant curvature with the Riemann; tensor given
by .
rRY = xS 89 - 51 59 ) | (502)
Wheré the deltas are the Kronecker symbols. Thus in every
invariant respecé the metric (5;%) with s = O is equiva-
lent to the de Sitter solution ha%ing the largest possible
'symmebry groups Moreover; with K = O the metric (5:1) is
Just flate To demonstrate these facts by a direct coordinas
te transformation is a challenging exercise which the suthor
did not undertakes
_ With s # 0 # K, and the functions A, B, C, E
completely arﬁitrarﬁ the solution (5¢71) has no symmetriess,
The actual (when s # O # K )and'sﬁurious (when s = 0)
lack of symmetry in (5@15 caﬁ'beAeasily interpreted geome;.

tricslly. Let us calculate the expression:

o ok 1 & def , -
e { Stp t = a% (563)
an b7 | -

' &
for the metric (5.1), where {fgékare Christoffel symbols

. {
: &

and £% = g 0f leee T is a vector field tangent to the

t=lines, constant in the A = parvametrization and in the
coordinates presently usede It a@pears that ad;p % if
and only 4f A =B =C =0 (when K=0) or A=B=0C=E= 0
(When‘.K Z 0)o Eﬁt'if Aéxgo'bd', thén'ﬁy changing to ano-
ther paiaﬁetfizafion we may achieve ad'z 0, i.e. toi is
then a geodesic vector, i.e, the t-lines are then geodesics;
Thus the funcbions A(t), B(t), O(t) and E(b) simply mea-
éure the géodﬁsic curva*uru of the ;=linesg and taking the

limit (AZ + B + C° E2)~«e>0 esponds to "staightening
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cut® the t=lines 6nto which the spherical ?%-gspaces are
stringede In the case of the flat (K = 0 ) or de Sitter

(K # O = s) spacetime, by straightening the t-lines we still

remain within the same sgpacetime, while in the general csase

{K # 0 # s) straightening the t-lines means changing the

spacetime from the solution (5‘1) to the interior Schwarzchild

solution [11] which results fromv(5¢1) When A=B=C=E=0,

S £0 £ Ke ' |

" When the spacetime(5.,1) is flat, K = O,'then»the funct-

ions A¢B and C have s vefy simple geometrical meaning°

. Hamely, then we can change to the Cartesiannlike coordinates

X=r sin¥cos¢,y=r sin*\?-sin'cg sy 2 = I cosv to obtain:

as® =% at? - ax® - ay° - az?, (564
where: v' ‘
D= A(t) « X+ B(t) ey + C(t)em + E(t)+ s  (5.5)

The firét threé térms is D' remind of a scalar product 6f

a 5~dimensional vector of components (As B, C ) by the
fradius vector™ (x; ¥, z)e This *scalar produét" ié totally
fesponsible for the spuriéus lack of symmetry. Indeed, A ;B

e

and C ave then the spabtial components of the vector a

o=

where & is defined in (De2)y iees a*= Aﬁ, aSzBEs

a?= CDy eand so they measure ﬁﬁe coﬁponents of the accelerat-
_ioﬁ vector (5e2)e Thus the 3=vector of components (A;B,C)
points from a 'point P on a.tmourve in the direction of
the local center of curvature of ﬁhe curve aﬁ P,

) To summarize: we can string spherical 3=spaces onto
orthogénal t-lines which are eithers: (I) "straight' (i.ce
geodesié} or (II) "curved” (nonmgeodesié); If the'spacetihe
' so obtaiﬁed ap?eéré empty—(or endowed with the A ~term only),

then in both cases it is flat (or, respectively, of constant
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curvature). If there is any métter- in the spacetime;then in
case (I) t}he spacetime is fully spherically symmetric 'while
in case_'(ll) it is note This altogether shows that the ana-
logies with 2-dimensional surfaces from sec.] were not quite

superficial,

Ge The general case with c() £ const

Here the equations RozzR '3:.0'593, respectively:

9%(<ggt /E;+/p$t )z/gi) = O k] ‘
y (6:1)
Dyg( &5y /S+/w,t) /5 sind = o, ,
" Again, since we consider the case D;g5 = qu, = 0 to be

uninteresting, we have from here g’t /g + /"L*’t = O, i'ee;:

8 =% (I‘) e—}k - : » (6@2)
where £(T) is an orbitrary function. |

The egquations Ryp = R,15 = O then say:

(Ds,g gsr /g Dsr&') /e/LXSD

(643)

(Ds /5 B’:&:‘ ) / &/ gl) sing = O. '

‘f : Q 4
Consequentlys .
T « % r _" - '
D= F,I(t,,ﬁr,ggg) O + Ey(b,1) (64
(note the close analogy with (4.3))s The equations
R25 = R’:’@ - 322 =0 ar§ again identical with (368) .and
(509) and so yield'

[A( t)sinV cosq) + B(t)sz.nﬁ’ sing + C(t) cosfﬂg-b |
KR 2 (t?r)@ . . (655)

In this point the line of reasoning must split to con=
sider two cases: either the fluid in the spacetime, if any is
present, moves along the t~lines, or it moves off the t-lin-

JCRp—. - = b1 ~ )
100 emerges, SO We deien to4g
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details to the appendices A and B, However, a few
points in the second case are of some importance,. so we shall
deal with them here.
In agreement with our assumptions from secs1, if the
£luid moves off the t-lines, then its velooity field u™

t

may have only the u® and u’ cdmponentse Then the tetrad

components of the velocity field will be denoted by U and

Vy, ileee: '
i def i g,ci : |

A AL R (646)
where
I S (667)
The tetrad components of the Einstein field equations are |
now ¢

e 2
GOO:-: Tc [( e+ p)‘ -U - p] 5

c .

. ) (6:8)
19 = “3 e+ )V + 2],

N an. ' ‘

Gop = &5 = 2 P
where 92 = —%—q e

C
It is easy to see now the followinge. The components

' Geo" Go’l‘ ~and G’i’l define algebraically the functions

Py €.-and U(V being eliminated by virtue of (6e7Y)e Since
(‘z22'- = '(;55 is fulfilled identieglly by D given in (6.5), ’

the component 622 alone defines the function p, too. In

order that p defined by G be the same as p defined

22
by Goo’ Go’l and G’l’i’ the following equation must be

fulfilled:
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| 2 |
(Goot Gop)(Gq = Gpp) = G 4" = 0 . ~ (649)

' This is the only‘differential equation that remains, Otﬁers
are Jjust algebraic definitions of € , p, U and V.

Iuckily, the equation (6.9) is solveable, but unfortu-
nately no new solutions are contained in it: all of them are
either spherically symmetric (Dsy = Dm£x 0) or are contained
in the class considered in sece4,- This is shown in the
Appendix B,

In this way we congluae that all the solutions of our
Dproblem were exhausted in sections 3 and 4., In01d ntally,
this means that no generality was lost in sec;4 on assuming
é = Ire Here, howevery; this fact is a hard-calculation
resulé of the field equations9 as opposed to the ordinary
spherically symmetric case, Where S;“ T (wf g not constant)

was merely a choice of coordinatess,

Ve Spacetimes with homogeneous hypersurfaces

Tn enalogy with the foregoing part of the paper we can
consider spacetimeswhich are composed of homogeneous 3-spaces
t = const orthogonally stacked, but which are not themselves
invariant under the groups of symmatrj of the 3-gpaces. An
ambitious project here would be to consider all the possible
Bianchi types of transitive groups [ﬁﬁ] ¢ For simplicity we
éhall consider only the spacetimes which directly correspond
to the standard Robertson-Walker Universes, énd this speciai
cése will appear complicated enough for the beginning.

We shall thus deal with spacetimes in which the 3=-spaces
t = const are homogeneous and isotropic, i.e. are the same |

'asiin the R-W models.
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corresponding to two different representations of the R-W

metrics. (The nuuwber of inequivelent extensions may be even

- larger corresponding to the different coordinates used to

represent the R-W metrics. Because each 3-space t=const

is isotropic and homogeneous, there is no wgy to identify
single points of it, and consequently there existes a multi-
tude of correspondences between pcints of different 3-spaces,

established by the family of the t=lines. Quite a different

.thing occurred in sections 1-6: a 5—space which is spherie-

cally symmetric but inhomogeneous has a well-defined center,
and so it is most natural to assume, as we did, that one of
the t=lines joins the centers of all the 3-spaces). We
shell begin with the spacetime in which the 3-spaces t=const
have the metric [14] : |

as;” = 2 [Zi-rri; ¢ T2 (a9 2 : sinY ag® )] e
where R and k are constants, understood to be mementary
velues of certain functions "R(t) and Kk(t) at a fixed fe
For simplicity we shall again assume that the lines of the
ﬁime.coordinate are orthogonal to the spaces t = const gi-
ven by (‘75’&)s and that the fluid source of the netric is

moving, with respect to the t-lines; only radially if at all,

_ Consequently, we assume the metric of the spacetime to be

of the fofm: .

. . . 2
2 2 L2 2 dr

= DYE. TN L@ YAET = RT( & +
=BT ( ),[’l—k(t)r?

ds

+ 2 (632 + éinzﬁ’ dqg )1 (762)

where D is an arbitrary function of four varisbles while

R and k are functions of te
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Since we havé shown in sections 4 and 6 that S - (equal
to rR here)ﬁmg depend on ¢ only when Dyg = Dg%,: 0, we
will not be surprised fo find in the next section that
Dis = ng = 0 unless R= const; k=conste However, one in=-
teresting new peossibility arises here: if k indeed depends
on t; and is positive for some & and negative for others,
then the curvature of the Bwspaceg t = const, équal o k/R?,
msy change its sign for a certain t., Thus, potentially,the
closed model could evolve here into an open one or vice
versae In itself, the idea of making k a function of &

" is so simple that the question arises why nobody has thought
of it beforee The answer is: whenever spatially homogeneoﬁs
cosmological models‘were considered; it was always assumed
that the.group acting trahsitively in the spaces t = const

is at the same time the symmetry group (or subgroup)of the
whole spacetime. Under this assumplticn one concludes (see
€efle [ﬂS] ythat the metric‘components ngy depend on t  only
through linear combinations of one-argument funciions of &,
and so- 1f (7.2)is to be homogeneous in the traditional Bianchi
sense, then oniy R may depend on time while k must be a |

constante

8¢ General constraints from the field eguations

Here we shall be interested only in the perfect fluid

or dust as possible sources, and again the velocity field of

T

the source, u&', will be such that u = u%)z 0. Consequen=

tly, the tetrad components of the Einstein tensoxr Gij’ in
the orthonormal tetrad connected with (7.2), must fulfil the
equations:

Gop = Goz = Gyp = Gy3

i
>

&

- 0 -
T3 T E

(847)

>

Ny

-
o
<o

A
M
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The equations G02= 605 = 0 yield, respectively:

O PSR V| JN

o Dyg /rD°R = O, ‘
| (842)
,_f/r]} sins = O, '
where:
oL = 2ok, /(1 = k:t'g) + 4R, /R (843)

Thus elther Dy = th_ 0 or A= O. We would tend to
discard the first case as spherically symmetric and thus un-
interesting. However; it is easyAto see that o = 0 implies

Ky = Ryp = O and so, on rescaling T Dby »/ = Rr and

redefining k by k!: mk/Rg we rTecover precisely the case
consi?ered in section 4. On the other hand, when D, = Dg(f = C
we still retbain the possibility of varying sign of curvature
which seems interestinge

Therefere we consider the first case, thus weturning to
spherical symmetry rather s00h. Tn this case the other equat-

ions of (8.1) are fulfilled identicallye

e The fluid moving along the G=lines

In this case the equation Go,l = O must be fulfilled
which says: |
2 2 Ve o .,
[k, D/(1-1x) + 2D, R, /R (1=kx™) ~ /RD = O. (941
' It -Rgtz O then k,tz 0, and so the case of seceh is

recovereds We shall then assume that Ry £ 0. fhen, if
k,t'x 0 -we have from (9¢1) Dy = 05 icee D = D(¥)e In this

- case 3 may by set equal to 1 by a coordinate transformation,
. and the standard Robertson-Walker metric is recovered. We
shall be interested only in the new situation which results

when k;4 # 0 # R;q
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' 2
D = ¢ (t)exp{ER k,tln (1=kx )j /4 KR,t} ’ (942)
- where (té(t) is an arbitrary function which may be setb

equal to By a coordinate transformation. Then:

D= (1= krg)ﬁ’, where: (93)

(3 = m:,t/zma;t., (9.8
Unfortunately, this is a blind alley. Further, rather in-
volved équations which result on substituting (9.2) and
(9eH) into the Einstein tensor, run intec a contradiction un--

léssl Ksy = 0, Thus, only standard Robertson=Walker sclute

ions are recovered herecs

10 The general f£luid

B i

If we allow the fluig to move in any direction in the
(Ts1) space, theﬁ: |
Te " If it is a geniune perfect f£luid, then the only equabt-

ion to be obeyed DY D is (6e9§e After (699) is

fulfilled, the pressure; energy éensity and veiocity

components are algébraically determined through Gije

o, Tf it is a dust,; then the two equabtions:

. 2 )
Goo®11 ™ G0t 7 Oy (107

must be fulfilled (mnote that, owing to spherical

symetTy, Gpp = G335 is an identity)e

No answer has been reached whether (ﬁoeﬂ) = (1062)
can be fulfilled; The provisional answer shouid be "no*
since then the function D{t,r) must simil taneously obey —
differential equatioase'The-eqﬁation (6;9}, on the other hand,

can be fulfilled, being just one equation for one function
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D(t,r), with k(t) and R(b) being arbitrvery paremeters, The

"prospects of obtaining a general integral of that equation

are, however, rather dim owing to its complexity.
The components of the Binstein tensor for the metric

(762), with .D,g = D;q.z 0, are written in the Appendix C.

11 A different extension of tﬁe R=W models

Tet us now repeat the reasoning of sections 7=1C for

a spacebime which is composed of these same 3-spaces in a

different waye Let us take a 3-space t=const from a
Robertson-Watker metric in a spherical conformslly flat re-
presentation [ﬂ61 :

2. _ __. R
Z . (1+ 1k32)

ds T 72 Lar?s x2(a %% singﬁ»duga)] (11e1)
m . , ,
where asgain R eand k are understood to be mémenﬁary values
of certain functions R(t) and k(t) at a certain value

of te If the 3=-spaces (4131) are'sﬁringed onto a congru-
ence of t=lines which are ortﬁogou&l to them, then the specew
time metric is:

as®= D°(b,7, 9,4 Yato- {Rz(t)/(j ¥ %k(t)rg_]g}r@rz +

+ rz(d 92 4 sin®

s~d<¢2)] . v (11:2)

With k=const, (11.2)is just a different coordinate repre=

sentation of the metric (7.2)e With k,, # O, (711.2) in gene-
ral is not a transform of (762) even if E:D(t,rfa ‘This can
be seen as follows. Leb us denote R and k from (11.2)

by S{ and ‘3{ respecﬁively and (b,r) by (tf,r/). Then r/

is related by = fLrom (7.2} by:
‘l / /
re BEDY . T - | S 1
= R(t) 1 +E’J{(‘G')rid (11.2)
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Since r = r(tﬁr/}, t from (7.2) must be transformed by
L t= F(tﬁr/), where F should be such that Byl = C,
ey - E(6) /1w U E] 5
This, however, means that F should simultaneously obey two
differentisl equations which is possible only in special ca-
. 8€Se Actually, the integrability condition TFypr,./= Fs,./ s
puts a first order equation on D, which will not be investi-
gated here, | | |
So in (1. 2) we have a new class of spacetimes. We

shall investigate 'them with the same assumptions concerning

the sources as in previous casese

\The field‘equations GOZ = GoB = 0 give the results:
¢ Dyy = ‘#’Dn? = O, ’ (11e4)
where ) ‘ '
1 e e 1.2 2.2 .
¢-:= E— -é-rkR + 2R (1 + E_kr ) /rJ/R D (115)

Thus either Dy = Dﬂ{,z O or qf‘ = O, We see easily
that ¢>z 0. implies i = % = O, and in this case the solut-
icn of section 4 will be reobtained. Consequently, only the
case Dsy 5 IJ.“%s = 0 is werth investigating.

If Dyg = Dig

0 = Gz = 0 are all fulfilled identically. However,we

= O, then the equatiocns Gjo = an = G2§ =

= G

~have to consider separately the case of the fluid moving along
the t-lines and the case of the fluid moving off the t-~lines.
If the fluid moves along the tnllnes, then the equatlon

Go1 = 0 must be fulfilled which reads:

) (L, , A‘3
(r - 4’ V)K/RD + (2VR/R - — kr /R)D,r/D (11.6)
where: |

Vi =1 + k(). (117

[
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The equation (11.6) may be rewritten as:

2V N Vig o - VsgVop o V’t?’r R Dop _ 0. 11.8
R vD v° D - R 2 )T (11-5)

and this is easily integrated to yield (V, /V—ﬁ/R /D =
(Vo )/

=1/E(t)9 ie€e
oV R : : -
(5 (=) | (11.9)

where F dis an arbitrary function of te. With sﬁch‘ Dy

the equaticn' qu = G22 .is dbéyed automatically, and so the
energy-momentum tensor defined by the field equations has
the algebraic form necessary for a perfect fluide.

The density & and the pressure p are given by:

‘ 1 '
'}-{Lé = 3 - — ,],]e/iO
(25 @0 | | ( }
X : £ wh 1 kr®
QQ‘ = o et = - - 2 + 5= 'l Ll o e 11e/i1
P 2P 20" -z ) ( )

More elegant formulae wesult if one parametrizes the funct-

ions after Stephani E1] as:e
F=1/, V= /g k= (02 edz)/ag, R = 1/a (1112)

where «&.; s and € are new functions of te. Then:

D= U /&N, - \ o (1113)
we =305 (1161
22 ¢ ;—_502_+ 260G AT /AT S (11,,155

‘The metric in this case is:

-

a2 = (F/avy? at? - 072 [ar® & 1° (497«

+ sin&aes ], - (11.16)

=

a+ 1 (07 = L)/ | (1117)
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The.solution giﬁen by (11:714) = (11.17) is a spécial
case of another solution found by’Stephani {1] as embeddibie
in a 5-dimensional flat space. We shall deal with that solu-—
tion more closély in the next section. Iet us note here
only” all the functions of & are. completely arbitrary, and
so k may change its sign as many times as one wishes. So
the sign of spatial curvature is not a fixed property of the
models of this class, just as we have argued in section 7e
.The solution reduces to ordinary Robertson-Walker metrics in
the special cases when 02 - 0(2 = eaa where € = + 1, O
or = 1, 4

If'the‘fluié is not moving along the t-lines, then,in

.addlﬁlOD to the equations G02 = Go5

G120 = Gz = Oyp -

= G35 = Oy qged up to (11.5), the single equation (6.9) hés

to be fulfilled. 1Its solution should be a generalization of the
Stephani®s models We leéve this for separate investigétion'

in a future worke

126 Generalized Friedman models with wandering center of

symmetry

We shall present here the farthest extension of the
Friedman-Robertson - Walker models along the line of section 11,
~In the previous section some rudimentary regularity of the |
spacetime was preserved because the t=lines mappipg each
3-space into other 3=spaces were assumed to join the points
which ﬁere "corresponding"‘in the following sense. Fach of
the 5@spaceé t=const was homogeneous and so had no center of
symmetry defined geometrically. However, the coordinate
systems used in the S=-spaces had all their centers (Origins),
and it was silently assumed that if a t-line passes through‘
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the origin of coordinates in one S=space,; then it contains'
all the other origins of the other 3-spaces, This can.be
seen from the form (?132); Such an assumption limitedAﬁhé'
class of metrics considefed,‘and as a result the field equat-
ions forced the whole spacetime to be spﬁerically symmetric.
This limitation can be, however, relaxed and we shall do it
here. We will now assume that the (coordinate) centers of
symnetry of different 5=spaces are arbitrarily'shifted with
respect bo each of the bt-lines.

Tt will be more convenient now to represent the metric
form of the 3-space in such coordinates which explicitly
exhibit. the arbitrary positibn éf the origin of coordinate

systeme One possible form is:

ds52A= (R/\?)2 (dx2‘+ 632 + d@g) _ _ (12671
where:

v . 1. 1, 2 2 , .2 .
V="+gk|(x- x,) (¥ = 30) + (8 = @0) ] (1202)

Here Rg k, Xo; ¥, and Zo }are arbitrary constants. In
section 11 we have aésumed that R and k were values of
- the functions R(t) and k(t) at a fixed moment of time,
while x_, ¥, and ‘30 were genuine canstant§ }ém5§§5IE‘bj
a coordinate transformation déscribing a simultaneous shift
~of the_origin iﬁ all the 3-spaces. This assumption is.by
no means necessary: Xo; Yy, and 50 'may be as well assumed
to be functions of time. The spacetime metiic_is then:

2

_ ' 2
ds = Dg(t,xgysz)dt2 - [?2(5)/v (tgy,xgz)jﬂdx? + dyg +
+ az° )3 : _ (12:2)
where: t ' '
: o 1 I » 2 , <2
V(6yx,752) = 1+ g K(6){[x -~ = ()] + [y - yo(t)j +
. . _ S :
+|z2 = 2 (5)]= ] . ol
2 = 2(0)]°T - (120%)
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This spacetine is composed of thé_same 5=spaces as the space-
time (11.2), but in general, with arbitrary x (%), yo(t)
and zo(t), the coordinate origins of two different 3-spaces
do not beiong to the same t=line. As one proceeds from one
5=space to another, the origin wanders with respect to the
t=liness This characterization seems coordinate-dependent,
but the spacetime (12.3) is different from (11.2) because the
metrié‘(12.3)~(12;4)'is'not spherically symmetrié (in fact,
with the funétions 'xb, yék zé being'completely arbitrary;
(1295) has no symmetries at all, as Killing equations show) .
The field‘equations for the metric (12.3)=(12.4) were
solved by Stephani [1] , and we shall call the solution the
Stephani Universe. It is obtained by assuming that the
éource‘in:the Einstein’s'equations is a perfeét fluid mbving
along the t—lipesa The field equations Goﬂ = Go2 = 605 =0
implj'then again (ﬁﬁ.9), and with (11.9) the equations Gq5=G13

With Stephani’s parasmetrization (11.12)the same formulae,

(ﬁ1514)m(11°15)3f0r the densiﬁy and préssure result,.

136 Some properties of the Stephanl Universe

'Frém the formula (11.15) one can conclude that p = O
- implies that k, X,y ¥, and 'zo are constants, and so then
D = D(t) (from (11.9) and (12.4))e In this case a coordinate
tranéfofmation‘makes D equal t6'1, and so the old Friedman
models are reobtained. Note that this means that %anishing
pressufe forbids the sign of spatial curvature to vary with .-

~ times (The same conclusion was hinféd to, by counting the
‘number of equations and the number of unknown functions, in

> v - - .
section 10); This statement can be supported by the follow-
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ing intuitive argument. In the normal, R-W cosmology, the
~ behavior of the closed and the open Universe can be expiained
in purely Newtonianltermsa The Universe is closed when its.f
masgéensity relative to the rate of expansion is large enough
to halt the expansion by its gravitational field; and is open
otherwise., Therefore, ﬁo have the closed Universe change into
an opén one a mechanism for the decay of mass would have to
be invoked. In ?rinciple, one mechanism is coﬁceivable. It
is well-know that the pressure in a gas or fluid, Whibh in New=
fonian physics can only tend to expand the volume of the med-
ium, gives, in the general=relativity theory, a positive con=
¢ribution to the energy-density [17] , and so, at large values,
exhibits the opposite tendency to enhance the self-gravitat-
ione(q? In an expanding Universe the pressure would gradually
diminish. It is therefore possible, in principle, that ini-~
tially the contribution of pressure to self-gravitation wouldA
be large enough to close the Universe, while in the later sta-
ges of expansion this effect of pressure wduld become négliw
gible and thus, with suitaeble amount of rest-mass, the Uni-
verse would open up. The opposite change would occur in a
contracting Universee _

This intuitive argument does not explein how several
‘ohangés,_ rom positive curvature to negative and back to posi-
tive, and so forth, could occur during the evolution of the

model, Such changes are mathematically evidéntly‘poss'ibles

) For the same amount of matter, larger pressure gradient
is required to support a relativistic star in equilibrium than
to support a newtonian star, and the increment in gradient is

proportional to pressure - Jjust as if pressure had its weight.
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as is seen from (11.2) and (12.4): the Stephani Universes
_exists with an arbitvary function k(t). The physics and
astronomy in such a Universe will be iﬁvestigated in separate
paperse. ILet us note here only the obvious conclusion that,
since the energy density is a function of time only, and the
pressure depends also on the other ccordinates, no equation of

‘state of the simple forﬁ. € = € (p) is admissible,
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' Appendix A
We shall consider here the first branch of the line of
réasoning'that splitted after (6.5): the one in which the fluid
moves along the t=lines. Then the‘velocity field u%X has

only the t-component, and so 3@1 = 0, which meano:

| 2 M | |
2( gstD:r = g"ch + /U’stger)/gD e = O (.Ae’l)A
Substituting (6.5)here and equating to zero the coefficients
of independent functions of ¥ and ¢ we obtain the result’ that

either A =B =C =0 ozx:

/PL’rt,"‘/u“r /th + I, r//}’t/f =0 (Ae2)
where we have used the fact that fe‘p; g o The first case
is again spherically symmetric, and SoAnot interesting, while

‘the second one yields:

8 = fe = g(t) + h(I‘) (AQB)
where g and h are arbitrary functions. The equation (A.ﬂ)f

yields one more result:

A ’

FZ’J:'S 2 Fég’tr + B, _,/U'HJ gir = O, | (Ae#)
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which,; with use of (Ae3), leads to:

2 (8 + B)Bysy - Fohy, |85 /f = Oe | (Le5)

Thus either B3y = 0, or:

F, = E(t)(g + h)s | | | | (4.6)

When g,t = O' we have S: g(r), and this case was considered

in section 4. Consequently, we shall deal only with the new

Case, (A.6) with €34 ¢ O. Then .‘ ’g may be choéen as the new

t coordlnate, 80¢ | A

g =t | (Ae7)
The equation which was still not considered is "

R

11"R

oo = = 0, It says:

¢D§ +\'(E/S )'D2 + (2/82)’D + 24, sin & cos (o +

+ 2By 8in¥ sing + 20, cos¥ = 0, C (A.8)
where:
¢ 9% 2/5% + 286, u, /80 - 26¢, /i = Aoy (49

With respect to the functions of I and c{) (L.8)is an
algebraic equation (actuslly it is a polynomial with respecb
to sind , cosV , 1na§* and cosq swith coefficients depending -
on t and r)y Consequently, the coefficients of independent

functions of ¥ and q should vanish separately. Substituting

(6s5)s (Le6) and (A.7) in (A:8), replacing every power of cos

highér than the *“irs*‘a’by use of cossz =1 = sinza‘B' (so that

only cosﬁ' nay remaln), and smllarly for cos@ y and fa.nally

takln,g the coefficients of sin 3% s:m ¢ and sin 3% sin® LF €os ,'

respect.ively, we obtain:

82 ¢ (3428 4 33) 0y - (4010)

65¢(5AB —A)_O.
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Let us suppose that 525';5 O Then (A.10) imply at once
;that A = B = O, Substituting this back into (635) and (A.8),
and equating to zero the coefficient of sinzﬁ‘ cos? we obtain
§3 ¢C5 = Oy ie€s C = O, Thus when @ # O we return to the
case of ordirnary spherical symmetry which we disregard
here, The only interesting solution of (Ae’lO)might thus be
¢ = O. This, however, implies (gé/g)st = 0, and from (A¢9)
we see that then we would have g’t = O what is impo-
ssible since 8 =t + h(I‘)o
In this way we have obbained a contradiction. Conse-
'quentlj, when S is not constant, and the source in the field
~equations is no more general than a perfect fluid moving along,
the t-lines, then either S is a function only of =x (the
case considered in secjcioﬁ 4) or the metric is spherically

symmetric in the ordinary seﬁsee :
Appendix B
Here we shall follow till the end the other line of

reasoning that branched off sfter (6.5) which we followed in

s€ece6 till (669). |
With D éiven by (6.5) and 8 by (6.2) our metric may
be written as: Co '
f{xrydr
(Ddt) - (= Ié T “ - (Sdﬁ) - (Ss:.nffd(‘)) (Be)
where: | |

[A(t)sin@‘cosf + B(t)s:m3 s:anQ + C(t)cos 3’-f-

+ F(t rﬂg(t r) ' (Bs2)
(we have denoted F2 S e We see that by transforming -
the coordinate T +to r = Sf(r)dr we can obtain £ =1 in

the new coordinates.
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The tetrad components of the Einstein tensor for the

¥ metric (Be1) (with £ = 1)are:

G ‘=§"2;55_,2-2$'5

0o

- 8,2 /8% 07,

286, Fsp/0” - 28, /0

Srr

G

il

01
Gpq= =3/ +38, 2 + 27/5D 4 sz/ge p® - 28, /50° +
+ 2%28 oFs. /D + 20"08 ,tcosﬁ’/DB + ZA’tg’t sind COSQ{)/DB +
+ QB,tg,tsinﬁTs:mcf /D3 + 2F’t S’t/DB (Be3)
53 6-2 + 3g9r2 + F/S D+ 235 - g,t2/52 D° +

+ 48 S o F /D + g%,r/n.

Gs

When (Be3) are substituted into (69)y and the result is multi-
plied B;y 1D5, vie obtain an equation 6f the form [polynomial in
sin¥ s cos«{f”, sincg . GOSLﬂz Oy the coeficients of the polyno-
mizl being functions of 5 and r. When we replace every
power of cosV and cos¢ higher than the first with useof
cos®HF = 1 - singﬁ’, and the same for?, so that cosvand coé ¢
appear "on_’Ly linearly if at all, t;her_; we may equate to zexro
each coefficient of the polynomial, The coefficients of
sin”% sinBLQ and sin”Y si‘pqge cos® yield respectively:

¥85, ~108%8% & 54 + 35) =0, (Bl
“{)55(5@ 40A5B + A5) = o,

Where :

Y - =-3/S4 95,1,4 6 85, 25,m+125 +65

If ¢ # O, then A = B = O, In this case, substituti A=B=0
Y ’ ng

’rr *2)
back into (6:9) and fakin,g the coefficienty of sin ty cosV we
obtain Y 5505 = O, i¢ee C = O, so we return to ordinary

spherical symmefry. Consequentl we shall consider only the
I 3 q ’
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case 4.}» = 0, deeez
1-8 §,.2) (28,50/5+ 35,5782 = 1/8%) =00 (Be6)

In this way the terms proportional to D5 in (6.9)

vanishe Taking next the terms proportional to D4, and
equating to zero the coefficients of sin4¢3 sinq's;gi and

sin 8’ s:m 0\ cosg we cbtain:

mn
2 6%~ 64%8° + A% + B )_o,»

o 5t - %, = . | R
where: N |
B = (1/53—38 /8T - (28,505 580,57/ 8% 4

- 1/§ )545fr£‘,r . © (B.8)

Again, with % =0 we obtain A =B = 0, and then
soon C = 0, similarly as before. Cocnsequently, the meani=-
ngful solution of (B.7)is for us ¥ = 0, Eliminating now the

secorid term in parenthéses in (358) by multiplying it by
2
(1 - é E”r ) and using (B 6) we obtain:
| 2¢ 2 2 2 _ o .
(1 =5 &r)(ﬂ 35°6, )wé (B.9)
There are 3 cases to be considered in (B.S). When
(1 =-82 8 2) = O, then 'X = 0 implies T = Oo‘ When

| 2{ 2 - o
(1 - 38 &r ) = O, then (B.€) is contradicted. So anyway we

cannot escape ‘the third 6asé:

F = Oi . - - (BW10)
From (B.6) we have now either (1 - 52 g,rg), or: _'
28,../5+ 38, 5767 =1/8% = 0. (Bo11)

It is seen that (B.117) contains the former equation as a

; i3 enough i consider (B.’% ) as the



- § = H(t), (Be12)
where H is an arbitrary function.
With P =0 and (Bs12)fulfilled, the equation (639)

simplifies to:

D-E(D3°%1_ * _‘g»t_age) =0 | | | (Be13)
where: | | \
Da= 36,75 -35,26,2/8%-u8,. 2,

) ‘ (Be14)

2 5 = I( ~8,t2/84 + 28,%-/—5 5) - E(g,t/(%e)(A,tsinﬁ COSP +

. + B,tsinﬁ‘ sing + G, cos Yo (B.15)

Analogously as before we conclude now fron (B."iB)that either

A=B=C=0 which case we disregard; or ‘@’l = O Then,

however,; either 5’13 ='O, and this case was considered in
secely or 92 = C what impliess

c 2 2 | 2 -
_Ag,t /53 + 2L0 554/ S - 28, &5,/ 5% = O, (B416)
and two more equations resulting from (Bs16)by substituting
P and C, respectively, for A, They are éasily integrated,
to yield: : . | .
E) = [K(r) SA(t)dt + L(r)]e ' N (Be17)
where K and I are arbitrary functions. The other two.

equations yield B = O,]A, c =02A where C,I' and Cé‘ are

arbitrary constants. |
When (Be17)1is substituted in (Bs11)we obtain that either
: A = 0, what we disregard because then also B =C = O = D,y = D’(’Q

or K = 0, what we disregard, too, as then &, = 0, or:

4K -2 + K K, = Og

R
i PTT

,(3.18)
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2 .
K L,rr -+ SKK’I‘L,T + KK,rrIJ = Oo

The equations (B;ﬂS)are easily integrated, but then we
Temain with: ' ‘

L 2 7.6 2 . 1 : .

{K Aqt + 1) (Ll-L,r + LL’I‘I‘) = 7 (3619)
‘which is the remnant of (B.71)after (B.18)are fulfilled., Now,
if A #£ 0 #K, then (B.19) yields on differentiabing with

i’

respecé T
41, 2 + 1L, = O . (8.20)
what evidently contradicts (Bi19).

Thus in this branch we areialso only @ble to recover

the case of section 4 or to return to spherical symmebtrys

~

Appendix C.
We give here the tetrad components of the Einstein

tensor for the metric (7.2)e A dot denotes the t—derivative,

& prime = the rwderivativeé

6, = 2k/R% + x°k R/R(T - kx)DF + 3R/ BPDP
6 = ok/R(1T = %) /2 D4 201 - )12 m0’ R,

1

6, = ~ 2rk'/R°D - k/R° + 2D’ /R - B2 /ROD° + 2RD/RDS -
‘ €9 2 " ’ . ) i ' ‘
o= 2R/RD 9
o . (2 L2 -
(Gpp = Gyp = = TRD'/RD. /RS 4 (1= k) /TRD +
- 2 PRR/R(T - Y0P 4 JPRD/(1 - =D 4

- RS R L i IR ot

- 82/R%0° & (1 - =*yD"/R%D + 2RD/RDS - 2B/mD%,
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