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Abstract 

When discussing spherically symmetric gravitational fields one usually assumes that the 
whole space-time is invariant under the 0 (3 )  group of transformations. In this paper, the 
Einstein field equations are investigated under the weaker assumption that only the 3-spaces 
t = const are 0 (3 )  symmetric. The following further assumptions are made: (1) The t lines 
are orthogonal to the spaces t = const. (2) The source in the field equations in a perfect 
fluid, or dust, or the A term, or the empty space. (3) With respect to the center of sym- 
metry the fluid source may move only radially if at all. Under these assumptions one solu- 
tion with a perfect fluid source, found previously by Stephani, is recovered and interpreted 
geometrically, and it is shown that it is the sole solution which is not spherically symmetric 
in the traditional sense. The paper ends with a general discussion of cosmological models 
whose 3-spaces t = const are the same as in the Robertson-Walker models. No new solutions 
were explicitly found, but it is shown that such models exist in which the sign of curvature 
is not fixed in time. 

w (1) :  Introduction 

When  discussing spher ica l ly  s y m m e t r i c  gravi ta t iona l  f ields in general  re la t iv i ty  

one usual ly  assumes t h a t  the  whole  o f  space- t ime is spher ica l ly  symmet r i c ,  i.e., 

t h a t  the  me t r i c  is inva r i an t  u n d e r  the  0 ( 3 )  g roup  o f  t r a n s f o r m a t i o n s  o f  coordi-  

na tes .  This  a s sumpt ion  seems m o r e  res t r ic t ive t h a n  necessary  because  w h a t  one  

has  in m i n d  whi le  do ing  obse rva t ions  is the  g e o m e t r y  o f  the  3-spaces t = cons t  

w h a t e v e r  the  choice  o f  t ime  is. The  g e o m e t r y  o f  the  space- t ime can t h e n  be  

1 Present address: Max-Planck Institute for Physics and A~trophysics, Karl-Schwarzschild- 
strasse 1, 8046 Garching, Munich, Germany. 
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recognized by indirect investigations, and it might be interesting to see what 
conclusions can be drawn if we assume that only each of the 3-spaces t = const 
is 0(3)  symmetric while for the whole space-time it is not necessarily so. 

In this paper I want to imagine a space-time as made of O(3)-symmetric 
three-dimensional spacelike hypersurfaces strung onto a timelike line orthogonal 
to them all, and to investigate the properties of such a space-time if the Einstein 
field equations are fulfilled. We shall also assume that the velocity field of 
matter, u s (if any matter is present), has only the u t and u r components, i.e., 
moves only radially if at all with respect to the line joining the centers of sym- 
metry of the 3-spaces. This assumption is justified by the fact that transversal 
motions of matter could be easily revealed by any observer, and would thus 
constitute a too-obvious evidence for the lack of ordinary spherical symmetry 
in the space-time. However, one could go on without the assumption of purely 
radial motions and see what follows. This problem still awaits investigation. 

The most general source in the field equations considered here will be a 
perfect fluid, whose special cases (in the mathematical sense) are dustlike matter 

(pressure = 0), the A term ("pressure" = const de=f A ~  0, "energy density" = -A), 
and the pure empty space (pressure = energy density --- 0). 

In the case of the A term and pure empty space no nonspherical solutions 
were found, i.e., the space-times considered here are forced by the field equa- 
tions to be spherically symmetric in the well-known traditional sense. However, 
in the case of a nontrivial perfect fluid one solution is found which is not spher- 
ically symmetric as a space-time. The reason for its nonsphericity is found to be 
the curvature of the lines onto which the 3-spaces are strung (see Section 5). It 
is the solution found in 1967 by  Stephani [1]. 

The physical difference between the space-time which is 0(3)  symmetric 
as a whole and one that has only O(3)-symmetric hypersurfaces can be described 
in the following way. If  we are given the 3-spaces t = const without any device to 
measure the time in different points, then we can reveal only the spherical sym- 
metry of each 3-space by purely geometrical measurements. If, in addition, we 
attach a clock to each point of the space, then we can say: the space-time con- 
sidered here is spherically symmetric as a whole if its 3-spaces t = const are 
spherically symmetric and all the clocks placed on one sphere go at the same 
rate. 1 The solution from Section 5 fits this definition. 

The plan of the paper is as follows. In Section 2 the problem is posed by 
writing a metric form concordant with all our assumptions. In Section 3 we dis- 
cuss the case which is analogous to the solution of Nariai [2] of ordinary spher- 
ical symmetry, and in fact we only recover the Nariai solution. In Section 4, we 
discuss the case strictly analogous to the standard spherically symmetric space- 
time and we find one nontraditional solution: the one of Stephani [1]. The geo- 
metrical properties of the Stephani solution are investigated in Section 5. In 

tThis statement is due to N. Salie. 
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Section 6 we discuss the most general space-time, obeying all the aforementioned 
assumptions, and we show that Sections 3 and 4 actually exhausted the problem. 

The final sections of the paper are devoted to an analogous problem with 
homogeneity. Here it is assumed that the 3-spaces t = const are homogeneous 
with respect to a three-parameter group acting transitively, but the whole space- 
time is not necessarily invariant with respect to this group. The problem here is 
considerably more complicated, so it is assumed for simplicity that the 3-spaces 
are spherically symmetric in addition to being homogeneous, that they are 
strung onto a line which is orthogonal to them all, and, as before, that matter 
displays no transversal motions to the distinguished observers. 

One class of solutions, found previously by Stephani [1 ], was reobtained. 
Another class was also investigated, in which no new solutions were found 
explicitly. In both classes the geometry of each of the subspaces t = const is the 
same as in the Robertson-Walker (RW) metrics, but the curvature of the 3-spaces 
t = const is varying in time in a different way, so that it can change its sign. 

The present paper is one of the possible specifications of the idea of 
C. B. Collins [3], who proposed to investigate space-times having subspaces with 
definite symmetry groups. In fact, the paper was motivated by the recent beauti- 
ful and enlightening criticism of standard cosmology by G. F. R. Ellis, expressed 
particularly in [4]. 

The calculations for this paper were carried out with use of the symbolic 
formula-manipulation computer system ORTOCARTAN [5, 6]. 

w (2): Definition and Statement  o f  the Purpose 

We shall deal with such space-times, whose subspaces t = const are all spher- 
ically symmetric in the normal sense. Thus, it should be possible to choose the 
coordinates in the space-time so that in every space t = const the metric form is 

dsa 2 = ~(r) dr 2 + g(r)(dO 2 + sin 2 0 de  2) (1) 

where ~(r) and g(r) are arbitrary functions of  the coordinate r [7], implicitly 
understood to be the values, at a fixed t, of  some arbitrary functions of  two 
variables, 3 '2 (t, r) and 5 2 (t, r), respectively. 

The most general such space-time has the metric form 

ds 2 = D 2 (t, r, O, 9) dt2 + 2al (t, r, O, 9) dt  dr + 2a2 (t, r, tg, 9) dt  dO 

+ 2a 3 (t, r, O, 9) dt  d~ - 3'2 (t, r) dr 2 - 5 2 (t, r)(dO 2 + sin 2 0 d9 2 ) (2) 

where D, a l ,  a2, and a s are arbitrary functions of four variables. For simplicity, 
just to gain an insight into a new kind of geometry which seems not to have been 
considered before, 2 we shall assume throughout the paper that the spaces (1) 

2An exhaustive search through the PhysicsAbstracts from the 1926 volume till the present 
volumes, conducted partially in connection with ReL 7, did not reveal any attempt of 
the kind considered in the present paper. 
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form the space-time (2) by being strung onto a timelike congruence which is 
orthogonal to them all, i.e., the t lines are orthogonal to the spaces t = const. 
Consequently we assume that 

O~ 1 =0~ 2 =OL 3 = 0  

We shall also denote 

(3) 

def eV( t,r ) 
3' = (4) 

The paper will be mostly devoted to the question: What kind of  a source can 
generate the metric (2)-(3) through the Einstein field equations if the metric is 
not to be spherically symmetric in the traditional sense (i.e., the function D is to 
depend on at least one of  the variables 0 and ~)? 

The components of  the Ricci and Einstein tensors, referred to in the paper, 
will be all with respect to the simplest orthonormal tetrad of  differential forms 
connected with (2)-(3). 

w (3): T h e N a r i a i - l i k e  Case 

In standard textbooks one usually chooses one of the coordinates (t, r) so 
that the function 8 (t, r) in (2) assumes a prespecified shape. Clearly, this is 
impossible when 6 = const, and we shall consider this case first. Thus we denote 
6 = L and consider the field equations for the metric 

ds  2 = (D  d t )  2 - (eUdr) 2 - (L  dO)  2 - (L  sinO d~) 2 (5) 

If, as we assumed, the source in the field equations is no more general than 
a perfect fluid, then the energy-momentum tensor is of  the form 

T i] = (e + p )  u i u  / - pgi] (6) 

where indices refer to the orthonormal tetrad. With our additional assumption, 
that the velocity field may have only the u t and u r components,  the Einstein 
field equations imply for the Ricci tensor 

Roa =Roa =RI2 =R13 =R2a = R 2 2  - Raa = 0 (7) 

However, in the case of  (5), Rol  = 0 identically, which means that the fluid must 
be moving along the t lines, i.e., u r = 0. The equationsRo2 =Ro3 = 0 say, 
respectively, 

I . t , t D , o / L D  2 = 0 
(8) 

P , t D , r  2 sin0 = 0 

Consequently, either D , o  = D,r = 0, or/2,t = 0. The first case leads to an 
ordinary spherically symmetric solution. Moreover, i f D , o  = D, ,  = 0, then 
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R22 =R33 =L -2 = const, Roo +Rxl = 0, and so the source may only be the 
A term, A = L-2.  This case was shown in [7] to lead to the solution of  Nariai 
[2], and so we can expect no new result along this line. 

When we follow the other case in (8) we arrive again at the result D = D (t, r) 
by another route. So finally we could not escape the full spherical symmetry, 
and we have reobtained the solution o f  Nariai [2] here. 

w (4): The Schwarzschild-like Case 

From now on we shall consider only metrics (2)-(3) in which 8 is not con- 
stant. In this section we shall investigate the (apparently) special case when the 
function 8 may be chosen to be the r coordinate. In the standard spherically 
symmetric case the necessary and sufficient condition for this was the gradient 
of  8 being a spacelike vector. There, however, we could employ transformations 
mixing t with r, i.e., t = t ( t ' ,  r ' ) ,  r = r( t ' ,  r ' ) .  Not so here: i fD  depends on 0 or 
r then to preserve the form (2) with ai = 0 we may employ only the nonmixing 
transformations t = t ( t ' ) ,  r = r(r ' ) .  Consequently, 8 may be chosen as the new 
coordinate r only when 8 = 8 (r) (i.e., 6,t = 0) in the old coordinates. 

The equationsR02 =R03 = 0 are here nearly identical with (8) (only r re- 
placesL) and so pose the same dilemma: either we return to the well-investigated 
case of  ordinary spherical symmetry (see, e.g. [8] 3), or/ l , t  = 0. We shall con- 
sider only the second case. Since, however, 

Rol = 21~,t/rDe u (9) 

we see that with/~,t = 0 we have Rol = 0, and so if the source is a perfect fluid, 
then it must move along the t lines. The source-free components of  the field 
equations yield now A = B = C = 0, or 

e-2U(U: + i /r)  - 1/r = 0 (10) 

Again, the first case is not interesting, being just spherically symmetric, so we 
shall consider only (10). Then we obtain 

e -2u = 1 +Kr  2 (t 1) 

where K = const, and 

D = r [A(t) sin0 cosr + B ( t )  sin0 sin~a + C(t)  cos 0] 

+E( t ) (1  +KrZ)  112 +s (12) 

where E is an arbitrary function of  t. The quantity s, though in general being an 
arbitrary function of  t, if it is not zero, may always be set equal to 1 by the 

3This reference is a beginning of a long and multiply branching chain of other references, 
leading into past times. 
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coordinate transformation fs  (t) dt  = t'. Therefore we shall assume that s = 1 or 
s = 0 .  

The remaining field equations just define the energy density e and the 
pressure p: 

~e = -3 / (  
(13) 

n p =  3K(1 - 2s/3D) 

where ~=  8 7 z G / c  4 . Thus e = const, and so the fluid is incompressible. Moreover, 
the metric corresponding to (11)-(12) is conformally fiat, which altogether re- 
sembles the interior Schwarzschild solution [9]. This solution was found by 
Stephani [1] as one of  the metrics which can be imbedded in a flat five-dimen- 
sional space. 

w (5): Geometrical Properties o f  the Stephani Solution 

Let us display the solution explicitly: 

ds 2 = D2dt  2 - (1 +Kr2)  -1 dr 2 - r2(dO 2 + sin 2 O d~o 2) 

D = r [A (t) sin O cos ~0 + B (t) sin O sin ~0 + C(t) cos O] (14) 

+ E(t ) (1  + Kr 2)1/2 + s 

s = l  o r0 .  
We see from (13) that the pressure differs from (-e)  (i.e., from the cos- 

mological constant) by a term proportional to s, and so with s = 0 the source of 
the metric (14) reduces to the A term, A = 3K. Then (14) seems to be a highly 
nonsymmetric generalization of the de Sitter solution [10] which results from 
(14) in its standard from whenA = B = C = s = 0 , E  = 1. However, as stated 
above, the Weyl tensor of  (14) is equal to zero. Therefore, if in addition the 
Ricci tensor of  (14) happens to be equal to the A term, the space-time becomes 
just a space of  constant curvature with the Riemann tensor given by 

RiIkl =K(~ik~Jl- 5~sik) (15) 

where the deltas are the Kronecker symbols. Thus in every invariant respect the 
metric (14) with s = 0 is equivalent to the de Sitter solution having the largest 
possible symmetry group. Moreover, with K = 0 the metric (14) is just flat. 
To demonstrate these facts by a direct coordinate transformation is a chal- 
lenging exercise which the author did not undertake. 

With s 4= 0 4= K,  and the functions A, B, C, E completely arbitrary the solu- 
tion (14) has no symmetries, 

The actual (when s r 0 4= K) and spurious (when s = 0) lack of symmetry in 
(14) can be easily interpreted geometrically. Let us calculate the expression 
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- -  + t~ t  7 (16) 
dX 37 

for the metric (14), where ( ~  } are Christoffel symbols and t ~ = 6~o, i.e., t a is 
a vector field tangent to the t lines, constant in the )t parametrization and in the 
coordinates presently used. It appears that a s cct a if and only i fA = B = C = 0 
(when K = 0) o rA = B  = C = E  = 0 (when K :/: 0). But i fa  acc t a, then t a is a 
geodesic vector, i.e., the t lines are then geodesics. Thus the functions A (t), B(t) ,  
C(t), and E( t )  simply measure the geodesic curvature of  the t lines, and taking 
the limit (A 2 + B 2 + C 2 + E 2) ~ 0 corresponds to "straightening out"  the 
t lines onto which the spherical 3-spaces are strung. In the case of  the flat 
(K = 0) or de Sitter (K 4= 0 = s) space-time, by straightening the t-lines we still 
remain within the same space-time, while in the general case (K r 0 r s) straight- 
ening the t lines means changing the space-time from the solution (14) to the 
interior Schwarzchild solution [9]  which results from (14) when A = B = C = 0, 
E = const, s ~ 0 r K. 

To summarize: we can string spherical 3-spaces onto orthogonal t-lines which 
are either: (I) "straight" (i.e., geodesic) or (II) "curved" (nongeodesic). If  the 
space-time so obtained appears empty (or endowed with the A term only), then 
in both cases it is fiat (or, respectively, of  constant curvature). I f  there is any 
matter in the space-time, then in case (I) the space-time is fully spherically sym- 
metric while in case (1I) it is not. 

w (6): The General Case with 6 4 = const 

Space limitations do not allow us to present here the details of  the calcula- 
tions, so let us state the result only. If  6 is permitted to depend on t, then the 
field equations show that either D = D(t ,  r) in (2), i.e., the solution is spherically 
symmetric in the traditional sense, or the solution (14) reemerges. 

In this way we conclude that all the solutions of  our problem were ex- 
hausted in Sections 3 and 4. Incidentally, this means that no generality was lost 
in Section 4 on assuming 6 ; r. Here, however, this fact is a hard-calculation 
result o f  the field equations, as opposed to the ordinary spherically symmetric 
case, where 6 = r (if 6 is not  constant) was merely a choice o f  coordinates. 

w (7): Space-Times with Homogeneous Hypersurfaces 

In analogy with the foregoing part of  the paper we can consider space-times 
which are composed of  homogeneous 3-spaces t = const orthogonally stacked, 
but which are not themselves invariant under the groups of  symmetry of  the 
3-spaces. An ambitious project here would be to consider all the possible Bianchi 



1028 KRASII~SKI 

types of  transitive groups [ 11 ]. For simplicity we shall consider only the space- 
times which directly correspond to the standard Robertson-Walker universes. 

We shall thus deal with space-times in which the 3-spaces t = const are 
homogeneous and isotropic, i.e., are the same as in the RW models. 

Two inequivalent extensions of  this kind were considered, corresponding to 
two different representations o f  the RW metrics. (The number of  inequivalent 
extensions may be even larger corresponding to the different coordinates used to 
represent the RW metrics. Because each 3-space t = const is isotropic and homo- 
geneous, there is no way to identify single points of  it, and consequently there 
exists a multitude of  correspondences between points of  different 3-spaces, 
established by the family of  the t lines. Quite a different thing occurred in 
Sections 1-6: a 3-space which is spherically symmetric but inhomogeneous has 
a well-defined center, and so it is most natural to assume, as we did, that one of  
the t lines joins the centers of  all the 3-spaces.) We shall begin with the space- 
time in which the 3-spaces t = const have the metric 4 : 

ds32 =R 2 [ drZ ] [ 1 - k r  2 +r2(dO2 +sin2OdtP2) (17) 

where R and k are constants, understood to be momentary values of  certain 
functions R (t) and k(t) at a fixed t. For simplicity we shall again assume that 
the lines of  the time coordinate are orthogonal to the spaces t = const given by 
(17); and that the fluid source of  the metric is moving, with respect to the t lines, 
only radially if at all. Consequently, we assume the metric of  the space-time to 
be of  the form 

[ dr2 +re(dO2+sineOd~2)] (18) ds 2 = D 2 (t, r, O, ~) dt 2 - R 2 (t) 1 - k(t)r 2 

where D is an arbitrary function of  four variables while R and k are functions 
o f t .  

Since we have shown in Sections 4 and 6 that 8 (equal to rR here) may depend 
on t only when D,o = D,~ = 0, we will not be surprised to find in the next sec- 
tion that D,o = D,~0 = 0 unless R = const, k = const. However, one interesting 
new possibility arises here: i fk  indeed depends on t, and is positive for some t 
and negative for others, then the curvature of  the 3-spaces t = const, equal to 
k/R 2, may change its sign for a certain t. Thus, potentially, the closed model 
could evolve here into an open one or vice versa. In itself, the idea of  making k 
a function of  t is so simple that the question arises why nobody has thought of  it 
before. The answer is: whenever spatially homogeneous cosmological models 
were considered, it was always assumed that the group acting transitively in the 
spaces t = const is at the same time the symmetry group (or subgroup) of  the 

4See p. 210 in Ref. 10. 
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whole space-time. Under this assumption one concludes (see, e.g., [12] ) that the 
metric components may depend on t only through linear combinations of  one- 
argument functions of  t, and so if (18) is to be homogeneous in the traditional 
Bianchi sense, then only R may depend on time while k must be a constant. 

w (8): General Constraints from the FieM Equations 

Here we shall be interested only in the perfect fluid or dust as possible 
sources, and again the velocity field of  the source, u c~ , will be such that 
u ~ = u ~ = 0. Consequently, the tetrad components of  the Einstein tensor Gii, 
in the orthonormal tetrad connected with (18), must fulfill the equations 

Go2 = G03 = G 1 2  = G 1 3  = G 2 3  = G 2 2  - G 3 3  = 0 

The equations Go2 = G o 3  = 0 yield, respectively, 

�89 = 0 

�89 2 sinO = 0 

where 

,~ = r2k,t/(1 - kr 2) + 4R,t/R 

Thus either D,o =D,~ = 0 or a = 0. We would tend to discard the first case as 
spherically symmetric and thus uninteresting. However, it is easy to see that 
c~ = 0 implies k,t =R,t = 0, and so, on rescaling r b y r '  =Rr and redefining 
k by k'  = -k/R 2 we recover precisely the case considered in Section 4. On the 
other hand, when D,o = D ~  = 0 we still retain the possibility o f  varying sign 
of  curvature which seems interesting. 

Therefore we consider the first case, thus returning to spherical symmetry 
rather soon. In this case the other equations of  (19) are fulfilled identically. 

(19) 

(20) 

(21) 

w (9): The Fluid Moving along the t Lines 

In this case the equation Go1 = 0 must be fulfilled which says 

Irk, tO/(1 - kr 2) + 2O,rR,t/R] (1 - kr2)l/2/RD 2 = 0 (22) 

I fR, t  = 0 then k,t = 0, and so the case of  Section 4 is recovered. We shall 
then assume that R,t =/= O. Then, i fk, t  = 0 we have from (22)D,r  = 0, i.e., 
D = D(t). In this case D may be set equal to 1 by a coordinate transformation, 
and the standard Robertson-Walker metric is recovered. We shall be interested 
only in the new situation which results when k,t =/= 0 --/=R,tD,r. Then, from (22) 

D = r  exp ([Rk,t ln(1 - kr z)]/4kR,t) (23) 



1030 KRASINSKI 

where q~(t) is an arbitrary function which may be set equal to 1 by a coordinate 
transformation. Unfortunately, this is a blind alley. Further, rather involved 
equations which result on substituting (23) into the Einstein tensor run into a 
contradiction unless k,t = 0. Thus, only standard Robertson-Walker solutions 
are recovered here. 

w (10): The GeneralFluid 

If we allow the fluid to move in any direction in the (t, r) space, then we 
have the following: 

(1) If it is a genuine perfect fluid, then the only equation to be obeyed 
by D is 

(Goo + G22)(Gll - G22) - Go12 = 0 (24) 

After this is fulfilled, the pressure, energy density, and velocity components are 
algebraically determined through Gi/. 

(2) If it is a dust, then the two equations 

G00Gll - G~I = 0 (25) 

G22 = 0 (26) 

must be fulfilled (note that, owing to spherical symmetry, G22 = G33 is an 
identity). 

No answer has been reached whether (25)-(26) can be fulfilled. The provi- 
sional answer should be "no" since then the function D(t, r) must simultan- 
eously obey two differential equations. The equation (24) on the other hand, 
can be fulfilled, being just one equation for one function D(t, r), with k(t) and 
R (t) being arbitrary parameters. The prospects of obtaining a general integral of 
that equation are, however, rather dim owing to its complexity. 

w (11): A Different Extension o f  the R WModels 

Let us now repeat the reasoning of Sections 7-10 for a space-time which is 
composed of these same 3-spaces in a different way. Let us take a 3-space 
t = const from a Robertson-Walker metric in a spherical conformally flat repre- 
sentation [ 13] : 

R 2 
ds32 - (1 + �88 2 [dr2 + r2(d02 + sin20 d~~ (27) 

where again R and k are understood to be momentary values of certain functions 
R(t)  and k(t) at a certain value of t .  If the 3-spaces (27) are strung onto a con- 
gruence of t lines which are orthogonal to them, then the space-time metric.is 
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ds 2 =D2(t ,r ,  O, 9 )d t  2 - (R2(t)/[1 + �88 r 2 ]2) 

• [dr 2 + r 2 (dO 2 + sin 2 0 d~2)] (28) 

With k -- const, (28) is just a different coordinate representation of the metric 
(18). With k,t ~ O, (28) in general is not a transform of (18) even i fD = D(t, r). 

So in (28) we have a new class of space-times. We shall investigate them with 
the same assumptions concerning the sources as in previous cases. 

The field equations Go2 = Go3 = 0 give the results 

~)D,o = $D,, = 0 (29) 

where 

~b := [-�89 + 2/~(1 + �88 2 (30) 

Thus either D,o = D e  = 0 or ~b = 0. We see easily that ~b = 0 implies/c =/~ =0, 
and in this case the solution of Section 4 will be reobtained. Consequently, only 
the case D,o = D,: = 0 is worth investigating. 

IfD,o = D,: = 0, then the equations G12 = Gla = G z a  = G 2 2  - G 3 3  = 0 are 
all fulfilled identically. However, we have to consider separately the case of the 
fluid moving along the t lines and the case of the fluid moving off the t lines. 

If the fluid moves along the t lines, then the equation Go1 = 0 must be ful- 
filled, which reads 

(r-  lkra /V)Ic /RD+(2Vt~/R 2 - �89 2 =0 (31) 

where 

V := 1 + �88 2 (32) 

The equation (31) is easily integrated to yield 

D=F( t )  ( ~ - - R  ) (33) 

where F is an arbitrary function of t. With such D, the equation Gn = G22 is 
obeyed automatically, and so the energy-momentum tensor defined by the field 
equations has the algebraic form necessary for a perfect fluid. The density e and 
the pressure p are given by 

k 3 P Fk ( l k : )  (35) 
Kp = R2 F2 2F-- ~ + ~  1 2 

More elegant formulas result if one parametrizes the functions after Stephani 
[1] as 
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F = 1 /a ,  V = v ia ,  k = ( C  2 - a 2 ) / a  2 , 

where c~, a, and C are new functions of  t. Then 

D = v / s o  

tee = 3 C  2 

Kp = - 3 C  2 + 2 C C v / v  

The metric in this case is 

with 

R = 1]a (36) 

(37) 

(38) 

(39) 

ds  2 = ( v / a v )  2 d t  2 - v -2 [dr 2 + r 2 (dO 2 + sin 2 0  d~ 2 )] (40) 

o = a  + � 8 8  2 - a : ) r ~ / a  (41) 

The solution given by (38)-(41) is a special case of  another solution found 
by Stephani [ 1 ] as embeddable in a five-dimensional flat space. We shall deal 
with that solution more closely in the next section. Let us note here only that all 
the functions of  t are completely arbitrary, and so k may change its sign as many 
times as one wishes. So the sign of  spatial curvature is not a fixed property of  
the models of  this class, just as we have argued in Section 7. The solution reduces 
to ordinary Robertson-Walker metrics in the special cases when C 2 - a 2 = ea 2 

where e = +1,0 ,  or - 1. 
If the fluid is not moving along the t lines, then, in addition to the equations 

Go: = G o 3  = G12 = Gla = G2z - Gaa = 0, used up to (30), the single equation 
(24) has to be fulfilled. Its solution should be a generalization of  the Stephani 
model. We leave this for separate investigation in a future work. 

w (12): G e n e r a l i z e d  F r i e d m a n  M o d e l s  w i t h  W a n d e r i n g  C e n t e r  o f  S y m m e t r y  

We shall present here the farthest extension of  the Friedman-Robertson- 
Walker models along the line of  Section 11. In the previous section some rudi- 
mentary regularity of  the space-time was preserved because the t lines mapping 
each 3-space into other 3-spaces were assumed to join the points which were 
"corresponding" in the following sense. Each of  the 3-spaces t = const was 
homogeneous and so had no center of  symmetry defined geometrically. How- 
ever, the coordinate systems used in the 3-spaces had all their centers (origins), 
and it was tacitly assumed that if a t line passes through the origin of coordi- 
nates in one 3-space, then it contains all the other origins of  the other 3-spaces. 

This  can be seen from the form (28). Such an assumption limited the class of  
metrics considered, and as a result the field equations forced the whole space- 
time to be spherically symmetric. This limitation can be, however, relaxed and 
we shall do it here. Wewill now assume that the (coordinate) centers of  sym- 
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metry of different 3-spaces are arbitrarily shifted with respect to each of  the 
t lines. 

It will be more convenient now to represent the metric form of  the 3-space 
in such coordinates which explicitly exhibit the arbitrary position of  the origin 
of the coordinate system. One possible form is 

ds3 2 = (R/V)2 (dx 2 + dy 2 +dz  2) (42) 

where 

V = 1 + � 8 8  2 + ( y - y o )  ~ + ( Z - Z o )  2] (43) 

Here R,  k, Xo, Yo, and Zo are arbitrary constants. In Section 11 we have assumed 
that R and k were values of  the functions R (t) and k( t )  at a fixed moment  of  
time, while Xo, Yo, and Z o were genuine constants removable by a coordinate 
transformation describing a simultaneous shift o f  the origin in all the 3-spaces. 
This assumption is by no means necessary: xo,Yo, and Zo may be as well 
assumed to be functions of  time. The space-time metric is then 

ds 2 = D 2 ( t , x , y , z ) d t  2 - [ R Z ( t ) / V 2 ( t , y , x , z ) ] ( d x  2 +dy  2 +dz 2) (44) 

where 

V(t, x ,  y ,  z)  = 1 + �88 k (t) { [x - Xo (t)] 2 + [y _ yo (t)] 2 + [z - z o (012 ) 

(45) 

This space-time is composed of  the same 3-spaces as the space-time (28), but in 
general, with arbitrary Xo (t), Yo (t), and Zo (t), the coordinate origins of  two 
different 3-spaces do not belong to the same t line. As one proceeds from one 
3-space to another, the origin wanders with respect to the t lines. This char- 
acterization seems coordinate dependent, but the space-time (44) is different 
from (28) because the metric (44)-(45) is not spherically symmetric [in fact, 
with the functions xo,Yo, z0 being completely arbitrary, (44) has no symmetries 
at all, as the Killing equations show]. 

The field equations for the metric (44)-(45) were solved by Stephani [1], 
and we shall call the solution the Stephani universe. It is obtained by assuming 
that the source in the Einstein equations is a perfect fluid moving along the 
t lines. The field equations Go1 = Go2 = Goa = 0 imply then again (33), and with 
(33) the equations G12 = G13 = G23 = Gll - G22 = G22 - G33 = 0 are fulfilled 
identically. With Stephani's parametrization (36) the same formulas (38)-(39) 
for the density and pressure result. 

w (13): Some Properties o f  the Stephani Universe 

From the formula (39) one can conclude that p = 0 implies that k, Xo, Yo, 
and zo are constants, and so then D = D(t)  [from (33) and (43)]. In this case a 
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coordinate transformation makes D equal to 1, and so the old Friedman models 
are reobtained. Note that this means that vanishing pressure forbids the sign of 
spatial curvature to vary with time. (The same conclusion was hinted at, by 
counting the number of equations and the number of unknown functions, in 
Section 10.) This statement can be supported by the following intuitive argu- 
ment. In the normal RW cosmology, the behavior of the closed and the open 
universe can be explained in purely Newtonian terms. The universe is closed 
when its mass-density relative to the rate of expansion is large enough to halt the 
expansion by its gravitational field, and is open otherwise. Therefore, to have the 
closed universe change into an open one a mechanism for the decay of mass 
would have to be invoked. In principle, one mechanism is conceivable. It is well 
known that the pressure in a gas or fluid, which in Newtonian physics can only 
tend to expand the volume of the medium, gives, in the general-relativity theory, 
a positive contribution to the energy-density [14], and so, at large values, 
exhibits the opposite tendency to enhance the self-gravitation, s In an expanding 
universe the pressure would gradually diminish. It is therefore possible, in prin- 
ciple, that initially the contribution of pressure to self-gravitation would be large 
enough to close the universe, while in the later stages of expansion this effect of 
pressure would become negligible and thus, with suitable amount of rest mass, 
the universe would open up. The opposite change would occur in a contracting 
universe. 

This intuitive argument does not explain how several changes, from positive 
curvature to negative and back to positive, and so forth, could occur during the 
evolution of the model. Such changes are mathematically evidently possible, 
as is seen from (28) and (45): the Stephani universe exists with an arbitrary 
function k(t). The physics and astronomy in such a universe wiU be investigated 
in separate papers. Let us note here only the obvious conclusion that, since the 
energy density is a function of time only, and the pressure depends also on the 
other coordinates, no equation of state of the simple form e = e(p) is admissible. 
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