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A NEWTONIAN MODEL OF THE KERR GRAVITATIONAL FIELD

Andrze]j Krasiiski
Polish Academy of Sciences

N. Copermicus Astronomical Center, Bartycka 18

00 716 Warszawa, Poland

In my earlier work 1—1_7 I have argued that
the gravitational field described by the
Kerr metric should correspond to a newtenian
fisld whose squipotential surfaces are con-
focal a2llipsoids. The argument was the foll-
owing: in the Kerr solution there exists a
timelike congruence of curves such that each
3-space locally orthogonal tc¢ a curve is fo-
liated into ellipsocids, The 3-space is it-
self curved, but the curvature is determined
only by the mass of the socurce, and for mero
mass the J-space; along with the spacetime,
becomes flat, It is then the simple Euclide-~
an space represented in the spheroidal coor-
dinates.

This argument shows that the Xerr spacetime
is composed of confocal ellipscids of revo-
lution in a way nmuch similar to the way in
which the Schwarzschild spacetime is compo-
sed of spheres. The ellipsoids are suggesti-
ve of equipotential surfaces of the gravita-
tional field, If such connection really
exists, then it would be useful to investi-
gate the source of the Newtonian gravitatio-
nal field whose equlpotential surfaces are
confocal oblate eliipsoids of revolution,

The present work shows how the desired New-
tonian solution can be found. In fact, one
source of the field in question is known., It
is a shell of finite surface density of
matter, the so called homoeoid, coineciding
with one of the equipotential ellipsoids
(/"2 7, the solution was found by Chasles in
1840), The new solution found here describes
an extended perfect fluid ellipsoild endowed
with spatial distrikutions of mass-density,
pressure and angular velocity of rotation.
It 1is one of the few solutions of Newtonian
hydrodynamics which describe rotating fluid
bodies of nonuniform density, and so might
be valuable irrespectively of its comnnection
with general relativity.

Let us take the axially symmetric homoeoid
of mass M, The potential in the exterior
point of cartesian coordinates (X,Y,Z)is:
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where (x,y,z) are coordinates of the current
peint of integration, T is the minor semi-
axis _of the homoeoid, a is its eccentricity,
and &(*) is the Dirac delta function cente-
red on the homoeoid, J is any volume totally
containing the homoeoid, and the delta-func-

tion is multiplied by constant facktors so
that the integral yields the correct value
of the mass paramster.

Let us change to the sphercidal coordinates:
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and similarly for (X,Y,2)—=(R,8,$). The
equation r = const describes an ellipsoid
of revolution, different ellipseids being
confocal, Then (1) changes to:
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where f1(w,Q)<frd<f2(v,Q) for all ¥ and ¢ ,
f1 and f2 being otherwise arbitrary, and:
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Performing the integration with respect to r
in (3) we obtain:
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This potential is actually a function of R,

its dependence on @ and § being spuriousé§-3_7

Knowing this, it is easy to guess a continu-
ous %fnsity distribution g(r,%) to replace
the o-like distribution in (3) in such a way
that the resulting field depends still only
on R. For a body bounded by the ellipsoid

r T, the required distriburion is:

3(r,9) = £(x)/(r*+ a”cos?d) (6)

where f is an arbitrary function of r. The
exterior field of this body is given by:
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The integrand to be integrated over ¥ and

is here the same as in (5), and so the re-
sult of integration is, as before, indepen-

Vi (R,8,9) GM (5)

r=r
(e}

vext (7)



Ly

dent of € and é, If go, then we may substi-

tute 8 = 0 in {7) fo find:
GM a
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where:
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Eq. (8) is the wmmique solution of the Lapla=-

ce equation for a potential dependent solely
onn R in the spheroidal coordinates and obey-
ing the appropriate boundary conditioms,

Let us now itry to solve the Poisson equation:
AV = WGs(x,y,z) {10)

assuming that the potential is comstant on
the ellipsoids confocal with the osuter sur-
face of ocur source, If V = V{r) in the coor=
dinates given by (2), then (10) assumss the
form:
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It is seen from {11) that ¢ = Sﬁr,&) and that
{(11) may have a solution only vhen g is of
the form (6).

Solving (11) with g given by (6) we obtain:
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where we have assumed %%(0) = 0., The value

of V(0) should be chosen so that Vext(ro) =

= Vint(ro)'

We assume now that the oblateness of the body

is caused by rotation around the minor axis
of the ellipsoid, with the angular velocity
field ©(r,¥). Thus, in the (r,&,ﬁ) coordina-
tes the only nonzero component o

= W, (13)

We find then that the equation of continuity
is fulfilled identically, while from the Eu-
ler equations of motion we obtain:
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where M(r) is given by 79) with r, —>r.
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We see that (15) is a linear equation for p,
solvable with any f(r) and any boundary con-
dition at r=r_. After p is found from (15),

W is determined algebraically by (14).

Let us note that p=p(r) is not a solution of
(15). This, together with (6), shows that
neither g nor p can be constant on all the

relocity is:

surfeces r = const,

If we assume that S,PALO, then the surfaces

of constant are mors oblate than the sur-
faces of constant V., Comsequently, they
cress the cuter surface of the body along
the circles {r:r y D= const}. Neote however
that if g’r<:0 811 the way from the surface

to r=0, then at tir:(), 3:]/2} ¢ grows to in-
finity,i.e. a ritdg~like singularity on the
focal ring of the sllipsoids appears, To pre~
vent the singularity, £(r) would have to,tend
to zero at r-=0 at least as rapidly as r~,

In this case, however, although ¢ is regular
on the ring {r=0, T=/2}, it vanishes in the
interior of the disk spanned by this ring.
This kind of singularity is less ridiculous,
but then cannot be monotonic with rsspect
to r; unléss it grows all the way from r=0

to the surface, Consequently, if there is

no ring singularity, them attains its ma=
ximum somewhere between thé center and the
surface or right at the surface,

The ring-like singularity is familiar from
the investigations of the Kerr metric sour-
ce Z“3~5;7: it appeared inescapably whenever
one tried to assume that the source is the
disk to which the eilipsoids shrink in the
limit r—0,

It is interesting to note that, in spite of
all the aforementioned wild curiosities, in
the 1limit a -0 our solution reproduces all
the possible spherically symmetric configu-
rations, and not just some of them, Moreover,
is shares some properties with spherically
symmetric configurations, like e.g. the ex-
terior field, in a given point of space, at
fixed a, being determined solely by the mass
parameter, M, and not depending on the size
of the source, Also, in such a configuration
the gravitational force at an interior point
P, exerted by the shell lying outside the
ellipsoid E passing through P and confocal
to the outer surface, is zero. The gravita-
tional force at P is determined solely by
the interior of E, This can be seen from

(12) and (9).
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