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Abstract; The cylindrically symﬁetric'noﬁstatiohary perfgct»flnialspaceﬁimes

- are proposed asrposéiblé'moieIS'of a roiatingl§nivé:sé. It is argued that |
_they are the simplest rotating generalizations of the Robei*ﬁsch—‘ﬁaikér*
:l:soacetlmes whlch contaln no geometrlcal structures except those connected -
| with matter. The Iormalzsm for treatlng spacetlmes filled with an 1sen»ropzc
::rotat;nayperfect fluid or dust is recalled. Cylindrical symmetry is defimned
'in térmS‘of properfies‘of the Kiliihg vectors. Theh the Killing equatlons
togeuher with some of the field equatlons are used to reduce the meiric
"to the simplest p0551ble form. Some hlnts for fntu“e investigation of. such
models are ngen. - )

4+ INTRODUCTION

. Of all the oosmoiogical~soiﬁtions found upbto now those‘base&'on isotropic
and homogeneous‘metrzcs-o; Robertson /3929._1932 and 1932/ and Walker fﬁesé]
have orO?en most usefuls They descrlbe} n .rough properties. of the real
Unlverse very well. Even the singularity 1nhorept in them has found much
" observational support, i.e. Our observed Universe really must have been-
exntremély hot and dense some tine ago [%eé_e.g. Paebles 1971, ¥eihberg.
1972;'Sciama 197@}. Howévor;'they conﬁain many unrealistic idealizations.
For'example, in an ideally isotropic and homogeneous Universe no galaxies
nay form. And>even if_theylare created by some perturbations, the question
appeafs: what is the origin of their rotation? Also, the obéér?atioﬁél
evidence'fof isotropﬁ'and homogenity of the Uhiverse is rather wesak, since
possibly much of the’ existing matter is not even reglstered by astronomers
/%eebles 19?1/. This means that future more rezlistic cosmological modele:
should be obtained by gradually abandoning those too ldealized assumptions.
It is a natural first stép.to look for such solutions'which‘fiolata the
conditions of homogenoiiy and isotfopy as little as possible, Consequently,
much'wofk‘has been done on homogeneous anisotropio Bianchi-type universes.
/%ee e.g. Collins and Hawklno 1973a and b, and references cited thereig}
Here we shall rather follow the suggestion of Gamow /194@/ which says: -
the rotaﬁxon of stars is explained by the fact that they form of matter_
‘1n a rotatlng galaxye. But why do the galaxies rotate themselves? Perhaps,’
analogously' it is because they formed of matter in the rotating Universe.
Today there is no distinct evidence of rotation of the Universe becanse
‘in the course oi' expans:.on the rotat:.on, if it were present, must ha\re

slowed down on account of the angular momentum conservation. It nght
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.houever be evlte repla 1n the ?ar nast.A
It is UOSalble EO 1nves,1v ate rotat1n~ Unlverses 1n the class of the

Bianc nl-,’ye homorﬂneous moeels. It mlght seem the rlvht trace to £OIIOWj .

' 1

if we uunt to keep close to Robertson—halxer models. However, one has

to be more Crlthul abouu tne term "nomo enelty“. The homOﬁenelty of the:-

m

ianchi moiels ls 07 a diiferent nhy51ce1 nature 1n‘the case ‘of. rotatlng~
matie uhan in uhe case of: rrledman models.vln ohe latter case the Unlverse
'looks uomogeneous for the observer comov1ng with matter, and’ no oeometrlcel
stvucuu;es exceee th° veloc1ty fl°1d of matter are. needei to descrlbe the
snilt:znr up OL sp cetlme 1n+o homogeneous 3-spaces. ' : '
uom, the alsulnouls~ed vector zleld &° -existing in all the Blanchl-type
nodels is nveersurzace—orthogonel, and must not be collnear with the»:i
velocity field 1f matter is to rotate. Thls means that 1n the Blancnl-type
zodels wlth roeatlng matter the. fleld e® is an a dltlonal, 1ndependent of
atter ueonetrleal structure. It means, there are Ged-rlven prelerred
observers who see the Unlverse to be esne01ally 51mple. It is not a deczslve

_arouz ent acalnst those models, but it shows chet two d :ferent thlngs
were nemed bj-the same word "homogenelty" If we take a Robertson—Walker_
portion of matter and set it into rotatlon vie w11l not necessarlly ootaln
a Blanchl-tvpe moael. , : ' ,
He e we pronose to start the 1nvest1vatlon of cyllndrlcally symmetrlc
'nonSueulonary rotating U iverses. They are. free of ‘the above dlsadvantage
an&, on the other hand, also keep close to Rober+son-Ualker models.
However, thelr bad feature is that they do not” encompass the closed model,
as it appears in sec. 2. ,' 4 -
Generel lsotropy must. be lost in rotatlng me*ter, since in every p01nt of
spacetime - there exists the alstlngblshed dlrectlon of the vortex-vector.
The only. remalnaer of 1sotropy then nay be the axial symmezry about thls
derCulon. HomOgenelty in the direction of vortex may be assumed as a '
remainder of 3-dimensional homovenelty of the Qobertson-Walker models.

In consequnnce, only two Klllln@ vector Iields surv1ve. Thls approach is
‘compiemenuary‘to that based on Blanchl-type moaels, and may lead to new
'results.. : B 1‘» "“ e ';‘ ' o .ﬁ. o .
We do not expect to obtaln a fully satlsfacto“y model of the Unlverse in
thls way because the galax1es ;ormed in such a model ~would have thelr

v

axes of. rot atlon allgned whlle real galaxzes have not. However, 1t is.

-‘..




: better to have a model with aalax1es ro:avlng pdrelellJ than 2 model which

"}forblds rotation at all.

The present paper starts with a short review of prev1ousl; obtalnea results(
’for a rotating 1sentrop1c pe"fect fluid /ﬁrasznsxx 1974, :975%/ Then

‘e‘cyllndrlcal symmevry is defined in terms of properties of tho Killing

".  vectors. These properties, together with the Kllllng equatzons, are used

'rto introduce the ‘most convenlent coordlnate systen, -and to esteo’xsh the

51mplest form of the metric tensor., Thor some of the field equeeloQS'are'
i'used for further s1mp1111cau10n of the metric., The paper ernds in the

i;'place where newvw 51mp111y1no assumptions become necessary to continue the
"1ntegrat10n of the fleld equetlons. Some such assumptlons are sugg st;d as

: ereasonable..
2. PRELIMINARIES

,We starf with a short repetition /krasiﬁski 1974 and 1975%} For an
Isenuroolc rotatlng perfect fluid there exlst the dynamically dlstlnvulshez

1

coordlnates /& 3 X ; x ’ x%/'characterlzea by the following equatlon

,Hﬁ" _e'ﬁ_‘ f' ',"5' 1 | fﬁ - A

. *'gH-‘g* o o ! i:"' - ‘ o o /é;%/

. m,:}fL . A__e B '
;ﬁﬁ8%=0"’ o R - .

%"ﬁdat{l%&g]—fglﬂz' o s o | /2'1/

where S 1s the den51ty of the rest-mass of pertlcles, S =men, m belng

. the mean mass of partlcle of the fluid, and n being the den51ty of .

‘number of pdrtlcles. The function H is the enthalpy per unit rest energy

defined by H ..(€+§D{gC' where é‘ls the energy density and p-is the.

pressure. All these thermodynamlcal quantltles are one-varleble functlons

of p, (n)belng an unknown function, and H being given in terms of p

and S(p) by' ' ' ’ ’
glx_’,

C” oSC?‘

nThe vectors u* and w‘ are veloc1ty and vortlcltx flelds respectlvely.

'H Ho + 'Ho%Cens;t. L . | ‘ ,{2'5‘/ :
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The epergy-momentum ftensor has the following form:

e e S :
TasT g ELE mpsg L g

Thess iistingmiéhed ceor&inat'esr are defipe& exact to the -tra'nsforma”c‘i‘on‘s:

Xe—:“: - ..)(.‘L ,‘2>

4 — 5 ’ : ‘ -',' .' ’ “"‘\
X = F(x ,1), o N ~

= _ a2y : Y /A
X-—{ - ug.' s X/ - 21’ ‘ - ' o TP

= =% +2(xt, x ) ' o |
where T is am arbitrary functidn of two variables while F and G obey

The fumciion S is n.xed exact. to an additive constant by the equat10n5°
2 '
| (é.g/

ﬁ.‘quadoa fE.d/ guarantses the 1n’cegrab111ty of the set /2 9//
‘This representaiion of the metric wvas 1nvented by Plebafiski /'197(.y by an

S, 4 = GF, 4 - X

S’é“:l = cF’z

incenious imvestigation of the equations of motion - T“((sr; = O ‘and the
eguation of contlnuzy_; mu.))og =0 » It is easy to verify that in thls
coordinzaie system all these equations are fuhllled iaentlcally. e ‘
recall sfier Krasidski /1974 and’ 4975&/ that dust’ may be cons:.dered as

the spﬁc:.dl case corresnondlng to H= 1 above.

3. CYLINDRICALLY SYMMETRIC SPACETIMES
Ye assume that local cylindrical symm-etry‘ is fully char_aét.erized .‘by the
falloung four properties: I ‘
£. There exist two Killing vector flelds (lé) and Izc) of which fp corresponds

to axial symmeiry and. é generates translatlons along the symmetry axise

Be KF= 8‘
@

€. Lk, k1=0

-De ::" =0 . _ _
Lk

The proaert:.es A, C and D need no Justlflcatlon because they just ref lect

i;he symetrzas of a cyhndrlcal surface in zn euclidean space.
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The property By in virtue of /@ g/ -means bhdt the axis of sycmairy

" coincides with the axls of rota»;on.

Our definition of cylindrical symmetry is purely formal. The cooriimzies

- given by /2.1/ /é Q} have been adjusted to physics, not to geomeiry,

and their geomotrlcal meaning is a bit vague. Therefore the symmpury

group will have to be investigated Tor each soluulon separately .when if-

‘is 1“ound., to check whether it~ really generates cylinires or €s5a planes,

- The proper globally cgllndrlcally symmetric spaceulmes ars anyway conbtzinagd |

in the above defined collectlon.-

vIt is easy to observe that those Bianchi-type Unlverses which comtzim

a two—parametvlc ‘abelian subcroun of symmetries may be spec1al cases of

. the. class con51derea here i@ . Of all Bianchi models only iypes VIII

and IX do not nosess thls properiy. /éee e.gs Appendix C to Belimskii,

Khalatnikow and Lifschitz 197Q/._There is no reason to werry'aboas type
VIII as it does not contain any of Roberts&n-?alkerAmodels.
Unfortunately, the closed model is a type IX metric, and it is rejected
from the present ;nvestlgatlon by the assumption C /@oll;ns and Hawkins
¢9?3§/ Hlth eXPIIClt use of the Kllllnm equations and the properiies B
and C one can prove that it 13 possxble to .specialize the coordinaies
given by /é 1/ [é.%/ so as to obtain:

o - 69

) . .
This’mightAseem trivial; aS'it.iS always possible to adjust the cocerdinates
to the.commuting Killing vectors in such a way that they gemerzte the
translations along the respective coordinate lines. Here it is importani

that such "Killing coordinates™ are contained within the class of section 2.

The pvoof is given in Appendix A. In this special coordinaie system ihe

3

1 . :
metric simply does not depend on x” and x , while property D means:
- . ’ 1

Together with /2.1/.~ (é.%/ this implies that the metric is of the form:
- V2 “2. 0 A o (a2 . ooy aedael
{182 =5 Z(dxo)z + 2278 %ax%x! + g m (a:d)' + 4g42§1"ﬁ12 +

+ Epp (dx2>2. s ZgZBdXZdXB + g33 (dx?)z /3'3/ )

whevre all the functlonsdepend only on x° and x2.

e e o e o e e e e o S e o e St . . S o e S o . S

&) They are if they fulfil the additional re@uirémeﬁt D.
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Th: equation (2.4' now readss
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The coordinate system, in which the metvlc f? 3/ is reprecenhed, is nat

unzquet it s defined exact to the transformations:

x° = gof‘“ €  32fﬁ ,dxzf:j o . S
=y w(&) T

X = Cx

AWS I (N I

x0T = x: ; Efcx )

where € £ 0 is an arbltrary constant, ‘and F() Téé)are arbltrary ;unctlons of -

'one varlable. Thxs simply follows from Apnﬁndlx A.

4. CANONICAL FORM OF THE METRIC -

We introduce now ﬁheifolloging notation:

14 = (32)23-2" h
,_(ﬁk)wz

~ k-1 - 4' . fo01)

I

g33 = - W
where h, k, 1, js w will be the new unknown zurctlons, éll positive.

) :

e g2 e

We also introduce the base of differehtial’formsé

e® s,egd\éx%"= r'ax® + xwlax? A

et = e4d~dxg %‘ 4/de + kd/zdxz v ..' , )@ib
e? = ezxgﬁxilrz 1/24, o , .2/
e? é‘eBg;dx* = 4/de + w4/2dx3

The metric /3.,/ may be written:

2 _ (eo")z_ (94)2 Cz\z | 3)2 9 1&/4.4/

.where the indices i, 3 =0, 1, 2, 3 label forms, :
- The set of coefflclents{geﬁ} given by [#.5} deflnes the set of rec1proca1
1‘cuef11c1ents{e .} by

el et 51' o : /4'-5/"'
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The coefficients e* and e} may be used to renresent all the tensors by their
.scalar components, S.g» k'ﬂs — R = ey, i’:(5 Q"é

.Proceedin@ fhe ét'an:iafi methods of co*rmutlnr the curvature tenso” /se<:

: e.o. ulsner, Thorne and VYheeler 19?3/ we obbain ?he components of the Qlcca.

tensor R j and insert. them in the field equations: ,
: ) O . M ,‘t . ' . .
R &,7‘4.(%/c2)(T°;, - ;—_ s +A§,§ SR 1.8/

~ vwhere z'z.:‘&‘x\“e/c’ s G =~ the gravitationsal cohstant A - the cesmological
| constant ,1=T% and 7 J are the scelar components of the energy-momeniunm
tensor To% given by [2 6/

Conslder the equation __R4Z+X2P~1h1np\o =0 (all indices refer to

usc.;laz: component./.- It can be written in the form:
. %XHW,N'.‘M . 0"‘ - kﬂ . 22
.;:here: ' S ' | |
RE %ﬁ} o qfi:n[(m‘l*ﬂ"”"* FIonE

b X, L g e ,.QX_..—} re8/
U THGDE T ZHEE T 2R3 (Rl |

[Tk, +

. . ’ ~3 . o — HH
Next consider the equation R°o—R&(Yy + (AW [ (A 2+ Ry =mgH.
With the help of _/1{«."(2, and after a.long calculation it may be put :Ln the form:

(a7 (o)™ H3,, == s o fos)

This shovs that}:i:O . unlessg Q what comasvonds to empty space solutions.
In v:.rtue of /@.2/ and [4.7} the equation [4.9} ylelcs T2 =—-x* , i.ed:

g = w,ﬂi%(ﬂl)"+r‘\' ' o | B {19/

where A = const. ‘ ‘
. Finally let us consider the equation ——Rg-)- EHWER, = 0. It is easily -

seen to bes

THE (™5 (37 o= e =0 | fory)
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The only term that can vanish. is tna second one in bracese. I»s vanzshlnv

2

means Jb——&&qbv— nnere fis-a function of X only. This’ means thats

.%23==§60§a33 c    .  o t" o S (&'1%)

If we perform the uransfnrmatlon f} 4/ ’Jlth --jf@i)dx’“ we oo’caln %)..)‘0

icee i'=0 in the new coordinates. The coordinates in which g“B C are given

exact‘to the transformations /3 f/ with T being an arbltrary constant.
Thus we have proven that bhe most Menﬂral cylindrically symmetrlc spacetlme

with rOwdln‘ icentraovic Derzect fluid has ths Lo‘low*nv metric form
dst= HE(d R+ xhde P — (o200 ot~ (k*L)(dﬂ)"-N(&@F : {4;‘13}
with additional equations (@.Q/, (ﬁ.%/ and /4,1@/.

typical arg umenu would be: there must exist such coordinates in which

=0 for ounerw1se the metric {3 g/ would not poseés the'?éf1actional

cn

i

2
yu

However, it is more nice to have such. a result obtalned from the field

)]

ﬁ

eguations,

5. SOMEZ HINTS FOR FURTHER INVESTIGATION
Let us notice that the function FG&) "in'/B 4} allows for significant

. simplification of those meirics {ﬁ.1§/ for. whlch(Uﬁ)m =0, i.e. k = a(@h.
Then 1n is enough to take F = -SQﬂdel to obtain k = O in the new _
coordinates. It is tempting to think that every metric (L.1§/ has this pro-

perty in virtue of the field eguationss This is not the case: Ozsvauh s

solutions of elass II /%i;h k = 17) and of class III are counterexamples
(Ozsvatb '19?Cy Therekklh\o + (0 when the metric is put 1n the form (h 1;/
(Eonsalt Krasifdiski 1975c for the appropriate exnresszon of Ozsvath” s
SOlLulOﬂ%/o - .
With (i, €0 the remsining field equations are so complex that it is rather
hopeless to integrate them without any new simplifying assumpﬂions.

The most obvious simplification would be to deal with shearfree solutions,
Detailed invesﬁigation of the field equaiicns reveals however that all
’sbearfree solutions are stationary belng thus of ‘no interest in cosmology.
The proof of.this statement is sketched in Appendix B.

The stationary cyllnarlca11y symme ric solutlons were all found and

metry across ths z = O plane, as it should being cyllndrlcally symmetric.




discussed in Krasiﬁski 1974, 19752 and 1975b. They must be special

or limitting cases of the time-~-dependent ones.‘Second way of proceeding -
would then be to try to generalize those solutlo*n;r'by iPScrﬁing '
functions of t¢ﬂe in place of cons«anns, and feeding everything back '
into the‘fleld equations. Still another way is to assume that some |
scalar equétiéns like 635%#1 = const (@here ©is the scalar of rotatioé/i
-which obtalned in the statlonary case still hold, wlth constants‘
perhaps gcnerallzed to. functlons of time.

An explicit modei of a rotatlng anJ expandlng Unzverse, not found .

as- yet, would be of a great value in connection with the problem’ -~
“ of the initial 51ngular1ty. The author - hones that the presant work

“111 be a step towards zhls flnal goal.
. APPENDIX A

SDec:Lal coordlnates for 2&

~ The assumpzlons A~D from section 3 glve us no dlrect 1nformatlon i
about the form of the Kllllng vector k, Therefore we assume it in the most

W
<3'eneral YOrm-

k;” V&)éo +><(x>8"‘ + YQS”‘ +Z®5 3 ﬂ-") |
165 E

.whare vV, X, ¥, Z are unknown functlons of all the four coordlnates.

The propertﬁes B and C 1moly at once'

Vys = Xy = 3{23_52,‘3 =0 - - {A.Z/

All-the scalar and‘vecfbr fields defined by the metric tensor are
invariant under the symmetry transformations..The function H is

a scalar by def1n1tlon, and it is easy to see that H is defined
by the metric through the equations detlg,]= -Siflcmi'F=—-UMr4§ g:H-PGb
'.(%he last equatlon was obtained by contraction-of the field

eqLatlons (L QZ/. Therefore H should be 1nvar1anu under the action

of 'k and k what means, respectlvely.

@ | o | | |
ByEo o ‘A{A.B).‘.
VH,, + XH W, =00 » (A

~ Also, W is_defined by.gdé as the timelike eigenvector of the energy—
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ﬁouenvum tensor “hlch in »urn is given as a funculon of b&g
B and its aerwaul as threugh-the ulnsteln field equatlons. Consequenuly,i-
;y ‘should alse be inv vrlant, 1.e. 1» should uomlute w1th i gnd }5 .
In vir tue of /2.1/ and /l.%/ it’ commutes with’ g)ldenulcally whlle,:.,» _

‘commutation with X ©, in vlrtue of [h 3/ and /k @f means: -

V}C ='X§£ = Y‘O . Z 50 =0 o ‘1 1;';'..' {ﬁ.;/

So V, X,;Y; Z aenepd cnlg on :)c’i and x?. Thzs property is preserved by

&-

‘ ‘the'tranéformatlens (é Z/. How we. bhall show that by a sultable
choice of F, G cand T in (2 Z/ such coordlnatps may- be obtalnad,
~in whichy o o R
The. equatlon [é 3/ means that the Jacoblan QL the transxormatlon o
[é./) equgls Te Tbls ‘makes the computatlon of the inverse Jacobl matllx '
[x*,d] very easy: ) ‘ o Co

\ . ' ’
°\a “4.&_) KM’" G,iﬂeﬁ". P )\'071"_‘?51‘ )

A o et = T
‘31 Cout ) Ry T T . J (ﬁ Z)
:_6,1( 3 )\?. = )4. . ’ gy
51“6;1‘ bha— Cn.‘Tﬂ' p X Fﬂﬂ-u.""":ﬂﬂ; LY 4. 4

unspecified ;L oe¢ng'zero. This. allows us to find he components ox
the transfbrmad~k'
&)

V= \/+CG->&G;.?5X+K Y o A
X'=8 ,x~ Fa:?.\( . : : /13.8/

'\(":fhp-i‘x_+Ff‘Y ' :  o B
i =(G71‘\T3L'. - i‘T”I)X (Fﬂ\u_l ,:,l \,ﬁ)\{ ‘T’Z—

If we wWish that Y 0. we 1mnose on F and G an equatlano
“"GuX"’gMY O ;  . A.y

in aidltlon to (2 Q/. ”he problem is to nvove that tne set of - ‘equa-
tions (é.&} /%.%/ does have colutlons. Thern are four cases:
I.If X =Y =0 then property D 1mplles iz = 0. But 833 # o

for gtherwlse ~L,_%%~ NP-O and there would be no’ rotaulon. '
4Consaquently, 3 = O.AThe Klllln” equatlons ylela then ea51ly the

result V = const, 1.e. k“ g what corresponds to the statlonary so-
) lutlons con51dered in prev1ous worxs sra51nsk1 197+ ana 1975%/

EEFO ol




x = x°
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" This case lies be ond the scone of the present WOTKa :
II.If X#0 =Y then the result is ready, and fA.9/ only gives
the transfﬂrmatlons wnlch preserve this properf ' '_b.

111, If L= 0 £ ¥ then the trdnaformatzon {é.{/ ulbh F =0
yields Y‘- 0. ' e o : o

Iv. The only case we are left with is X £ 0 # Y. In tnls case we‘
_obtain from {@ 8/ -and’ ,%,2)

| (Y/XF!' SRR :
| & He o | [a10)
G:=—_- +—-..—F":‘ s | o Y
) 3! .t_)" x 3% o . - ) {;011)
'In this place it is convenlent to 1ntvoduce exp11c1tlj the
inverss transformatlon xt= (256(1 ,x’-) X2 = 't((x ,xl)

With the help of (A.‘?/ the equatlons [A.10/ and (A 14) are seen
to chanme to:

Q0 )
R Y A

~ The equation [§.1a]‘is a simple linear equation for d , obviously
having‘31301utioh5 and after_@ is found, {3.1}/ forms alwell~defined
linear inhomogeneous equatio@ for ¢ . The existence of its solution

'is guaranteed by the well-known Cauchy-Kovalevska theorem /See evSe
Courant and'Hilbert.1°6g}' Since & 1 and @ exist, the existence: of F
and G obeying [ 10/ - /lgﬂ1/ is guaranteed by 1 = 2(F,6)/y, ¢)-

,Thls compleues the proof that Y‘~ O may be achieved.,

_ 'Yow, with F and G found above the equatlon Z'= O becomes a linear

'1nhomogeneous partlal aifferentlal equation for T with all coefficients

belno well deflned functions of xﬂrana xL The existence of 1ts

solutions is agaln guaranteed by the Cauchy-Kovalevska theorenm.

Inserting ¥ = ¥'=2=2'=01n /A.&/ we obtain Gpu=0 and Gﬁ T11- Os .

__”hls, together with /é.&) and /2.2/ .allows to show easily that

~ the transform tlons preserv1ng the propertles Y Z = 0 -are glven by..

i ‘X4:='X /5’2, + FCX ) ','\... | ‘

(327 i . o ': A.'nzy
‘».;:3' + TT(X '> - A g o

W

. ]
ll
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~

kwheve F, G and T'are arbltrarg ekcent that foﬁ O.'

Now let us con31der the Killlnw equatlons’-

(,{5 %"(5)) ()3”(83("’ )7{3 9"‘5.—_0 N . S _‘ [Aq'lS}
‘with kﬂ’*“‘{ﬂ‘ A")S}L*‘XC\ )5)04 . Tak:.nrr the componem;s /01/ and /02/ of
/h.13 we Obtaln respectxvely. ‘ : '

Vg 48Xy -0 - L e ‘.'/"16/

‘~%,+ﬁX&=O " '  .j*  :~ fF‘f‘Mﬂ/

| {En obtaznlngv(k 16/ we have used [Z.%[/ ‘The aoove equatlons 1mply'
X=X6d | . ﬁMS/
V’-*Sx,i-x,iclx’? o o ~ '.A—.’19/

Now take the transformation /h 1%/ w1th F and T aroltrary, and GC&O

beln- the inverse function ‘té

y e K o o -
X~ =expy —— ) o - fAJ20/

| g VE)/K(E)+6 » S /£ , /
Such a transformation leads to Viz O and X'= const; Thus £3.1/
is proven. Insertlng V=01in {A.2Q/ we obtain xl CZMQ . C = const.
Then (1 1%/ reduces to /3.3/ ' ‘

e
APPENDIX B

Shearfree solutions.

T

The nouvaﬂlsnln” comDononts of sheaf are
Ty == g e = iHh’S Se | . S
S = —\"ﬂna.,o-\-iﬂa,‘,_s Sy
Hah,m— Hgig S0 - ' . .
f‘Hﬁs>,o+ Hﬂsg %o . |
The above formulas are wrltten 1n.the coordlnate system of /ﬂ.1§/

We see that when . 0;6 = O then h, qu, 850 and g33 are all proportlonal
- to g ﬂ with the proportzonallty factor 1ndependent of x%e




=15 -

‘“herefore here(k[h)‘, _(«54;/6,0_ Gy and it is uos.;:.hle to achieve g"iE 0
‘by the coordinace transformation mentioned in sectz.on Ss

Consecuenﬂy, the snearfree etrzcs /4.13} may be put in nhe form-

-oLsz H“L(cba fxldx‘)L— g ztszu&ﬂ(dx*}%%é(c{x%w ] _‘
| o /B. 2/, E

Awhere ol,(S)q are unknown. Iunctlons of x2 obeyzng Aforx=4

. jln consequence of /2.1%/ and H with ¢ are the only i‘unctlons

allowed to depend on x°, ‘

VE] started with ten fleld equatlons. Two of them hc.ve been used

to obtain /25.10/ and one more to obtain /21-.11/ Then, after the

metric was put in the form /4-.413/‘, two more field equations turned

"'to'-ideriﬁities. We are 1ef_t with five field equations plus the -

equation - ‘ o '

S=cdneaen (Y

wheres is glven by (4.8/ Some of the fleld equations still contaln
pressure terms on .their rlght hand side, so one of them may be used

- to cancel. the pressure in the cthers. Then we' stay with four -
secona—order equat:.ons, and /33 3/ which is a first order one, It will
be more convenient to represent /B.y by two second order equations
B = 0, 3,)_=~%xl. So finally we have six equations-linear in t};e‘

six second derivatives H, Mg th %oy and &yy «They can be solved

algebraically for fcnpse second derivatives,, 1.e. represented in

o fhe form~

(o:/

where d\? stands for other varlables than H and g Phe functioms?P

)bd UJ(H) )b)é)f))f.,](-?) 372,3 :GL&(H)H,”S)S:L)@?)
ij
and G, . are of first order in § and 5
To the equatlons /B lx-/ we anply the 1nueo*rab1hty conditions .
Foo™ ?wc =Goo,y— ’o",c-Fezy 250 =Cowy~ GJ-.O:O’ and use 8.4/ to | ;
- remove all second derivatives of H and 3 that reappeared. In this
N\
_waquuata.ons of first order 1n H and ¢ are obtained. Indeed, it 15(/ S
: enough to use the last two 1ntegrab111ty condltlons to obtain the result
H =0 = =30 which means statlonarlty. : '

b
~ The detalled calcula»lons are 1too complex to be worth present*ng. "
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