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The paper develops a systematic derivation of the Kerr metric and its possible sources
in a clear geometric manner. It starts with a concise account of previous attempts at con-
structing an interior Kerr solution. Then a treatment of stationary-axisymmetric space-
times, specially fitted to the needs of the following analysis, is presented. A new notion of an
ellipsoidal space-time is introduced: it is a space-time in which local rest 3-spaces of some
observers split naturally into congruences of concentric and coaxial ellipsoids. It is shown
that these 3-spaces are natural spaces to consider the ellipsoidal figures of equilibrium.
The investigation is carried out in detail for axially symmetric oblate confocal ellipsoids, but
possible generalizations are indicated. The Kerr metric is found to be an ellipsoidal space-
time of this special kind. Some remarks concerning an (unfound) explicit interior Kerr
solution conclude the paper.

1. INTRODUCTION: A SHORT HISTORY OF THE KERR SOURCE PROBLEM

The Kerr metric [1] which resulted from rather formal investigations of Kerr and
Schild (see [2] for a retrospective account) was immediately recognized as describing
a space-time exterior to a finite rotating body, thus being very interesting for physical
reasons. As the only solution of this kind it has gained much popularity and has given
rise to many important works providing a deep insight into mathematical and physical
contents of the general relativity theory. The number of papers dealing with various
aspects of the Kerr metric is now of the order of 102, and is constantly growing.

One of the problems evoked by the Kerr solution, stated already in [1], was
the finding of its source, i.e., a metric obeying the Einstein field equations with
matter, and joined smoothly to the Kerr metric across some three-dimensional
world tube with closed spacelike sections. Curiously, in contrast to considerable
progress, e.g., in Kerr black hole physics, the problem of the source remained unsolved
until now, in spite of many attempts and partial results. The literature of this subject
1is rather extended, and it might be useful to summarize briefly the achievements in this
field. The following account is hopefully complete until the end of 1975.1

Four main lines of attack may be distinguished:

(I) Identifying possible sources by investigation of singularities and physical
interpretation of parameters of the Kerr metric.

! The author will be grateful for information about any relevant paper not included in the survey.
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(II) Eliminating some types of sources due to contradictions or mcon31stenc1es
to which they lead.

(III) Constructing physically acceptable conﬁguratlons matched to the Kerr
metric only approximately.

(V) Constructing odd conﬁguratlons with unphysmal properties matched to
the Kerr metric exactly. _

Group I started with the original paper by Kerr [1] where, by investigating the
solution with the use of the Finstein—Infeld-Hoffman methed of approximation, it was
found that the parameters m and a correspond, respectively, to mass and angular
momentum per unit mass of the source. The identification of @ was later confirmed by
various methods by Boyer and Price [3] (comparison with the Lense-Thirring [4]
form of the field of a rotating liquid sphere), Cohen [5] (use of the definition of
angular momentum through integrals of the energy-momentum tensor contracted
with appropriate Killing vectors), Léauté [6] (the same method as in [3]), Moss and
Davis [7] (use of Komar’s [8] formulation of conservation laws). These papers
provided a preliminary picture of the source, though a very vague one (“something
that rotates” was the message).

Janis and Newman [9] devised a method for analyzing gravitational multipole
moments in the exact general-relativistic formalism, and investigated the moments of
the Kerr field [10]. From their formal similarity to electromagnetic moments of a
rotating ring of charge it was concluded that the source of the Kerr field is a rotating
ring of uniformly distributed mass m having the radius g, i.e., it is placed rlght in the
ring singularity of the metric. In the same paper [10] a remark due to Kerr [11] is
mentioned, that it is rather the disk spanned by this ring that should be interpreted as
a source because on it the metric coefﬁments suffer a nonuniqueness of a branch—pomt
type.

Recently Léauté [12] used Bel’s method [13] of identifying singular points of
various stationary metrics, and found that the source of the Kerr metrlc may be
described as a point particle of mass m equipped with an additional spin degree of
freedom. This result, however, has no direct physical interpretation, as Léauté’s
analysis was carried on in a conformal transform of the rest space of observers having
the timelike Killing field as their four-velocity. The conformal transformation involved
is singular on the surface of the ergosphere, and its image is just the singular point
interpreted as a point particle.

In group I we may also mention Misra [14], who obtained an “interesting result
that every static axially symmetric (nonspherical) empty space-time must possess a
ring singularity. However, it was not verified if this singularity is really irremovable.

The first paper of group II was that of Boyer [15], where it was shown that a
rigidly rotating perfect fluid source must be bounded by a surface obeying a definite
algebraic equation. Later the same author [16], tried to obtain a similar equation for
a nonrigidly rotating perfect fluid source. However, since there is an infinite variety of
possible nonrigid rotations as opposed to the unique rigid one, the result contains
such a high degree of arbitrariness that its practical usefulness is very small.
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Hernandez [17, 18] eliminated a very special combination of assumptions about the
source. He divided the Kerr metric into two parts: the spherically symmetric
(Schwarzschild) part and “the rest.” Then he assumed that the same division may be
made for the interior metric searched for and that the spherical interior part is just
the interior Schwarzschild solution of uniform densn;y Finally, he strove to match
separately the spherical parts to each other, and “the rests” to each other, assuming a
very special form of the interior “rest,” and using the perfect fluid field equations. It
appeared that this program cannot be performed. This failure will be simply explained
at the end of the present paper. Hernandez’s suggestion that the Kerr metric has no fluid
source at all is based merely on the result described above, and thus must be treated as
unjustified.

Herlt [19] investigated systematically the consequences of Boyer’s equation [15] and
apparently showed that a rigidly rotating perfect fluid source cannot be matched to
the Kerr metric if the configuration is to have a meaningful limit ¢ — 0, and its
pressure is to be positive everywhere. This statement was shown to be false by
Roos [20], who pointed out a few mistakes in Herlt’s analysis. Roos investigated the
problem of integrability of the Finstein field equations with a perfect fluid or ani-
sotropic nondissipating fluid as a source, and with the boundary condition that their
solutions are matched to the Kerr metric. It appeared that, with some limitations on
the shape of the bounding hypersurface, these equations form an integrable set, at
least in a finite neighborhood of that hypersurface, whether the fluid rotates rigidly or
not. Based on this fact Abramowicz et. al. [21] made another investigation of Boyer’s
equation [15] and obtained a few inequalities to be fulfilled by parameters describing
the source. These do not exclude the possibility of a fluid source as the authors
sorrowfully admit. Their paper contains an overt misinterpretation of Thorne’s
statement [22] that the Kerr metric “cannot represent correctly the external field of -
any realistic stars.” This meant: not any arbitrary—because all the multipole
moments are exactly determined by the angular momentum parameter @ which shows
that the source must have a very definite structure. However, the authors of [21] have
taken it literally to mean: not any at all.

The analysis of Herlt was done again, with use of the very same method as in [19],
by de Felice et al. [23]. They found possible shapes of the source, and recovered
partially the results which Herlt obtained and discarded on the grounds of his mistakes.
Paper [23] is an improved version of a fragment of an earlier paper by de Felice [24],
where the same problem was investigated in the weak-field approximation, with less
conclusive results.

Finally, Abramowicz et al. [25] stated that “pressureless disk cannot be the source
for the Kerr metric,” this conclusion resulting from the assumption that the two-
dimensional surface of the disk must be a closed one, which is plainly false.

The information supplied by group III is not very reliable because matching
two solutions is a mathematical procedure requiring definite yes-or-no conclusions.
Approximately almost everything can be matched to anything if the approximation is
cleverly adjusted. This opinion is confirmed by the variety of “approximate sources”
for the Kerr metric.
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The first paper in this series is due to Cohen [26] who used the method devised by
him and Brill [27]. It is shown that up to linear terms in the angular velocity the Kerr
metric can be matched to a rotating spherical shell of zero thickness (so in fact this
paper is a hybrid of all the poor features of groups III and IV). Cohen remarks
that a full perfect fluid sphere; and possibly many other configurations, could serve as
approximate sources in this formalism. ‘ |

The same configuration as in [26] was investigated up to square terms in angular
velocity by de la Cruz and Israel [28]. They confirmed the first-order results of
Cohen [26] that the shell is spherical, of uniform surface density of matter, rigidly
rotating and having a flat space-time inside. In the second order all these properties
are lost unless the shell is placed right on the Schwarzschild sphere. It is emphasized
that the convergence of this approximate procedure is not guarenteed, but if it is
convergent then there exists an infinite variety of shells of various shapes containing
empty (not necessarily flat) spaces inside and Kerr space-times outside.

This last statement was even strengthened by Hartle and Thorne [29], who obtained
an empty space metric valid outside any slowly rotating portion of perfect fluid. This
agreed, up to square terms in angular velocity, with the Kerr metric. _

McCrea [30] used the method of Synge [31] to find the interior and exterior fields of
a rigidly rotating material sphere, and showed that up to k2 (where k is some small
parameter) the exterior field is the same as that of Kerr. At the same time the Florides—
Synge method [32] was used by Florides [33] to show that up to k° the Kerr metric
may be matched to an interior solution describing a rotating sphere of nonperfect
fluid (pressure anisotropic). Up to k?® its rotation is rigid; in higher orders it becomes
nonrigid.

Arkuszewski et al. [34] investigated the linearized version of the Einstein—Cartan
field equations, and have shown that in the linear approximation the Kerr metric may
be matched to a static sphere of Weyssenhoff fluid (composed of spinning particles).
(Speaking about other theories of gravitation let us mention in passing that an exact
counterpart of the Kerr metric has been found in the Brans-Dicke theory by
Mclntosh [35]).

Finally, Florides [36] used the same method as before to match the Kerr metric up
to k° to a rigidly rotating oblate spheroid of nonperfect fiuid (anisotropic pressure).

Now let us consider group IV. It was started by Keres [37], who devised a
method for finding Newtonian limits of relativistic gravitational fields, and used it to
investigate the Newtonian limit of the Kerr metric. This appeared just the same as the
- (Newtonian) field of a rotating disk spanned by a ring of radius . The interior of the
disk had negative mass whose density diverged to — oo when approaching the circum-
ferential ring. The ring, however, contained a compensating infinite positive mass, so
that the net mass was just m.

Later, Israel [38] tried to remove the arbitrariness connected with the choice of the
boundary of a source by assuming a “minimal” source, i.e., the disk spanned by the
singular ring. He used the full general-relativistic theory of Lanczos [39] connecting
surface energy-momentum densities to discontinuities in the second fundamental
form of the source’s boundary. In this way he arrived at precisely the result of
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Keres [37]. Though such an artificial source can hardly be taken seriously, the complete
agreement between two different methods is really remarkable. Israel concluded that
we do not understand the Kerr geometry under the inner horizon, and perhaps a
radically new approach is needed.

Still another disk, a “microgeon” made of gravitationally bound electromagnetic
field, was matched to the Kerr metric by Burinskii [40]. Giirses and Gursey [41] and
Collas and Lawrence [42] found a source made of nonperfect fluid whose pressure was
anisotropic with at least one principal value negative. This solution was matched to
the Kerr metric across an ellipsoid r = r, in the Boyer—Lindquist [43] coordinates. It
will be mentioned once more at the end of the present paper, in connection with our
results. , _

Hogan [44] obtained a nonperfect fluid source (anisotropic pressure) enveloped in
a “crust” of zero thickness, finite surface density of matter, and somewhat arbitrary
in shape (a “‘deformed ellipsoid™). This could perhaps be considered as a primitive
model of a planet, but in that case one would prefer the ““crust” to be of finite thick-
ness. v , : . _
Most recently Hamity [45] has found a source in the form of a rigidly rotating disk
with regular interior and singular edge. The interior of the disk consists of matter
having isotropic tension and zero energy density. The tension diverges to oo when
approaching the edge. Such behavior resembles the Keres—Israel disk [37-38]. How-
ever, Hamity did not cite those authors and made no comparison of the results.

So many unsuccessful efforts aroused a gradually growing pessimism. At the height
of the pessimism there appeared an opinion that the Kerr metric might have no other
source than a black hole [46]. Whatever arguments may be used to support this
opinion, one thing is clear: such a statement was never proved. The lack of success in
searching for the source may as well indicate the inadequacy of the methods used, and
is in itself not even a suggestion that the source must be something exotic. Therefore
I have tried to devise a simpleminded method based solely on such assumptions
whose geometrical meaning is clear and easily understood.

This paper presents such an approach. It will prove to be of some real value only if
it actually provides a source for the Kerr metric. This goal has not yet been achieved,
but it seems that some new possibilities have opened up. At any rate, it is-a new
approach, and the foregoing introduction was intended to justify the author’s under-
taking. , |

Section 2 is a treatment of stationary-axisymmetric space-times, arranged slightly
unconventionally for the needs of the succeeding sections. In Section 3 a new structure
called ellipsoidal space-time is introduced. It is a space-time which distinguishes
geometrically a congruence of concentric and coaxial ellipsoids. The exposition is
directed toward the main goal of obtaining a source for the Kerr solution, so only
axially symmetric oblate confocal ellipsoids are considered in detail, but a few possible
generalizations of the procedure are indicated as problems for future investigation. A
general metric form for an ellipsoidal space-time filled with matter is obtained. In
Section 4 empty ellipsoidal space-times are considered, and the Kerr metric emerges
there as a corollary of a derivation somewhat similar to the standard derivation of
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spherically symmetric line elements. Other papers which touched the main ideas of the
treatment are mentioned. Finally, in Section 5, one more unsuccessful trial of
group II is presented together with some general remarks concerning the searched
interior solution. ' o

2. STATIONARY — AXISYMMETRIC SPACE-TIMES

In this section we shall mainly appeal to the intuitive geometrical background of the
definitions given. 'We shall only explain what and why we assume, without insisting
on the “economy of deduction” (i-e., conclusions as strong as possible from assump-
tions as weak and as few as possible), and without using the field equations. In fact,
nothing will be proved, only the contents of definitions will be slightly transformed.
More rigorous treatments of the subject may be found elsewhere (e.g., [22, 47-52))

We realize a stationary space-time as one in which there exists a distinguished
family of observers who see the space-time geometry unchanged as their proper time
flows. An axisymmetric space-time is one whose geometry does not change under
rotations around a given spacelike line. Consider now a-space-time which is both
stationary and axisymmetric. Let the distinguished observers wait idly for a time ¢, and
then rotate the space-time instantaneously by an angle ¢. We feel intuitively that the
result (nothing has changed!) will be the same as if we first rotated the space-time by
@, and then let the observers wait for the time 7. It means that the two symmetry
operations .commute. This property is specified by assuming that there exist two
mdependent Killing vector fields {‘ﬁ,’; and {if which obey the equation:

{(Ig , ‘(Ig)]“ = k* k*, — kr k* = 0. (2.1)

1) @ (@) (B °°
The vector éc) is timelike, being tangent to the world lines of the distinguished obser-
vers. It is easy to prove (see, €. g., [53]) that to any two commuting linearly independent
vector fields such coordinates may be adjusted in which:
(If;“ | 84y, (éc)“ _1'8“3 - o 2.2)
With such 'Kjllin‘g vectors the metric tensor of the space-time does not depend on
x? and x®. It is important to know what transformations of coordinates preserve this
property. Let us note then that any linear combination of Klling vectors with constant
coefficients is also a Killing vector. Therefore the searched transformations need not
preserve each Killing vector individually, but only transform any such linear com-
bination of them into another combination with constant coefficients. It is easy to
find that these transformations are given by :

X0 = AxY + Bx¥ + F(xV, x?'),
xt = F1(xV, xz;), '
x% = P, x*),
xP = Cx% + Dx¥ + F3(xV, x?),

(2.3)
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where F“(x'', x¥), p = 0, 1, 2, 3, are arbitrary functions of two variables, and 4, B, C,
D, are arbitrary constants subject to the condition:

o(F*, F?)
e(x", x*)

In this point our approach differs from the standard ones [47-52]. It is usually
assumed that the trajectories of the Killing vector (k) are closed (at least in “‘spatial

infinity””), with {x® = ¢ + 27 (other coordinates fixed)} corresponding to the same
point as x3 = ¢. This singles out a particular subclass of the transformations (2.3) in
which B = 0, D = 1; otherwise the period of ¢ would be other than 27, and shuffling
of periodic ¢ with nonperiodic ¢ would cause geometrical inconsistencies. We want to
retain the freedom to choose B and D arbitrary. Then the (lg)—trajectories will not, in

(4D — BC) - # 0. (2.4)

general, be closed: they will be screw- lines on the (¢, ¢)-cylinders.

Suppose that the lines of x* in (2.3) are closed, and consider the coordinate x°. If
B 5 0 then increasing x* from 0 to 2, and keeping x*" = const, we return to the
starting point, but with x% increased by 27B. This means that we have introduced a
time coordinate which suffers a jump: it differs by nearly 2#B for two points
of which one has x3 just above 0, and the other just below 2, x being
the same for both. It follows that after x® is increased by its full period
from 0 to 2wD (keeping x° constant) we arrive not back to the starting point,
but to a point. shifted by 2#B along the x%line given by x® = 0. Therefore it
must be assumed that the x3-lines are finite segments of screw lines, topologically
closed at the {x® = 0}-end, and open at the {x® = 2w D}-end. The trajectories of k are

composed smoothly of these segments, only their parametrization behaves w1]dly
This is a typical difficulty if we use two intersecting congruences of screw lines as
coordinates on a cylinder (see Fig. 1). |

If we choose B = 0 in (2.3) then the x3-lines are still closed and there is no jump.
However, since the metric depends neither on x° nor on x3, we have no straight-
forward means to check if the (x°, x®) we actually use are nonjumping, until we relate
them to some well-known geometrical structure. This problem cannot be removed just
by the arbitrary procedure of “identifying points;” it is a physical problem to be
solved. Consequently, we must admit (2.3) with B arbitrary to be able to remove
jumps if necessary.

Let us now consider the motion of the distinguished observers. It may happen that -
they are at rest with respect to some reference frame defined by (2.2) (it is possible
when there exist two mutually orthogonal linear combinations of the vector fields (ltc)

and (k) with constant coefficients). The space-time is then called static. We shall be
A _

interested in the other case when the observers are in motion with respect to every
reference frame given by (2.2). Such a space-time is called stationary nonstatic.
Owing to the assumed symmetries the observers may move only in the ¢ = x3-
direction, otherwise their four-velocity would not be colinear with any combination
of the Killing vectors, and their world lines would not coincide with any trajectories
of the symmetry group. In a given time interval 4¢ = 4x® each of the observers will
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pass through a sequence of values of the angle ¢ = x®. If we reverse the positive-time
direction, each observer will pass this same sequence of values of ¢ in a reversed
order. Thus the time-reversal yields the same effect as the reversal of the direction of
rotation of observers. Consequently, if the coordinate system is adapted so as to
describe these two reversals by t — —¢ and ¢ — — ¢, respectively, then these trans- -
formations cancel each other, and the simultaneous inversion:

(t, @)~ (—1, —¢) - 2.5)

1s a symmetry operation. This property implies that every component of the metric
tensor which would change its sign under the inversion (2.5) must vanish, i.e.:

8o = 8oz = 813 = &2z = O A (2.6)
Notice, however, that the inversion of time flow and direction of rotation is des-

cribed simply by (2.5) only in a subclass of coordinate systems given by (2.3). The
inversion of (x*, x*) results in a more complicated transformation of (x°, x3) if

Fic. 1. Skew coordinates on a cylinder. Steeper lines are full screw-lines x® = const, parametrized
by x°. Less tilted lines are finite segments of screw lines, on which x® = const, parametrized by x3.
The x°-coordinate suffers a jump 47 = 27B when crossing the line PRT (on which x® = 0 ~ 2xD):
the segment POR (R excluded) has x° = 0, the segment RST (R included) has x° = 2«B. The metric
form alone does not allow one to distinguish such “jumping” coordinates from regular cylindrical
coordinates,
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F°=£0 =« F3. If we want to describe the considered inversion by (2.5), possibly
combined with symmetry transformations generated by k and k then we may
admit (2.3) only with F°, F® = const. : :

We have thus shown that tlie metric of a stationary- amsymmetrlc space -time may
be put in the form: : : . .

ds? = goo@t? + 2ggsdt dqb + g33dp? + gapdxAdx? - (2.7)

where A, B = 1, 2, and all the components of the metric depend only on x! and x2.
The terms gathered in g zdx4dx? form a two-dimensional metric, covariant under

the transformations (2.3) with F°, F® = const. It is known (see, e.g., [54]) that a two-

dimensional metric form may always be represented as explicitly conformally flat,

g apdiAdx® = B2, xB)[(dxh)? + (dx.

We will content ourselves Wlth a less special coordlnate system in Whlch the subtensor
g4 1s only diagonal, so:

g4pdxAdx? = gyy(dxY)? 4 goa(dx®). (2.8)

This coordinate system is specified exactly to the transfofmations (2.3) with F9,
F? = const and (F?, F?) obeying:

8'11F1:1’F152’ + g2ZF2>1'-F?'92' = 0. (2-9)

Suppose now that in the space-time con31dered there is matter present, and the
distinguished observers move along the flow lines of matter, which are thus trajectories
of the symmetry group. Then the four-velocity »* fulfills the equations:

'm=w=of (2.10)
and [u, (kt) 1=1u, (k)] = 0, which means:
us = U(x1, x?) 8% + V(x%, x?) &% (2.11)

where U and V are arbitrary functions of two variables.

Since the Kerr solution itself is stationary and axially symmetric, it will be
reasonable to look for its source having the same symmetry group. However, it is
possible to start with metrics of an even narrower class than that given by (2.7), (2.8).
They are connected with ellipsoidal space-times considered below.

3. ELLIPSOIDAL SPACE-TTIMES

In Newtonian hydrodynamics one is able to gain any exact information about a
finite rotating portion of fluid only in case it has the shape of an ellipsoid [55, 56].
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Therefore, it will be natural to start analogous investigations in general relativity
considering the same simplest case. It will be most convenient to use the ellipsoids as
defining a coordinate system:in the space-time. To do this, however, we must first
define what an ellipsoid is in curved spacetime, i.e., at least find the metric form of an
ellipsoidal surface. For simplicity, and in order to keep inside the class of axially

symmetric space-times, we shall consider ellipsoids of revolution only, thus leaving
behind us: -

. g

PROBLEM I. Make an analysis, analogous to that given below, for nonsymmetric
ellipsoids. . - " ‘ “

Imagme now thfa three dlmenswnal Euchdean space ﬁlled with a congruence of
elhpsmds of revolution with common center and.common axis of symmetry. Let the
two semiaxes of each ellipsoid be quite independent, i.e., do not assume any correlatlon
between the shapes of different ellipsoids. Let the semiaxis lying along the symmetry
axis be taken as the coordinate r in space, so that r = const on a fixed ellipsoid. Let
& be the azimuthal angle measured around the symmetry axis, and. & be a third
coordinate defined at will. It is most convenient to define (r, 4, @) in terms of
Cartesian coordinates (x, y, z) as follows:

 x = g(r) sin & cos P, A
y = g(r) sin & sin @, . (3.1
Z=17rCcos

where g(r) is an arbitrary function whose value equals the other semiaxis of the
r = const ellipsoid. In the (r, #, ®@)-coordinates the equation of an ellipsoid

[(x2 + yz)/gz(r)] + (2°/r®) = 1 is an identity $o each ellipsoid is described simply by
r = const. The metnc of the Euchdean space now assumes the form

dx? —|~‘dy2'—l— dz* = (g,* sin? & + cos® ) dr? 4 2(gg, — r) sin & cos Hdr d
4 (g% cos?d + r2sin? F) dd? | g?sin? & dP2. A (3.2)

Note that the new coordinates are orthogonal only when ggr —r=20,1e, g*—
r? = const, which means that the ellipsoids are confocal, prolate for g2 — r2 < 0, and

oblate for g2 — 12 > 0 (for g% = r? they reduce to spheres). For our purposes it will be
enough to consider the case of confocal oblate ellipsoids, so we assume now:

g —rr=a | (3.3)

and consequently we leave for future investigation:

ProBLEM II. Consider the cases of ellipsoids correlated in' other ways, e.g.,
geometrically similar ones for which g/r = const.
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With (3.3) the metric (3.2) reduces to:

dx? + dy + dz2 = [(r? 4 a? cos® 9)/(r? + a?)] dr?
+ (r® + a® cos? 9) d9? - (r* + a?) sin® & dP2, (3.4)

We obtain from here the metric form of the surface of an ellipsoid of revolution simply
putting r = const. For one ellipsoid the assumption (3.3) is not restrictive because the
geometry of one surface does not depend on the properties of the congruence in which
is is imbedded.

Coordinate systems of the kind.(3.1) were used by Misra [14], Zipoy [57], Morgan
and Morgan [58] and Slivinskii [59] to analyze some static axisymmetric solutions.
There, however, no geometrical structures in space-time were connected with the
elhpsmds The flat space metric precisely in the form (3.4) was obtained by Koppel [60]
as a “nonrelativistic limit” of the Kerr solution.

We need now a metric form of a three-dimensional, axisymmetric curved space in
which the (r,?, @)-coordinates are orthogonal, and the surfaces r — const are
ellipsoids of revolution, the same as resulting from (3.4). It is easily seen to be:

ds?s = f¥(r, 9) dr* 4 (r? + a? cos? P) d9% + (% + a®) sin? & dD? (3.5)

where the dependence of fon r and ¢ should be found from geometrical considera-
tions. This is:

ProBLEM III. How does the function f(r,?) depend on the shape of ellipsoids
forming the congruence ?

Before proceeding to four-dimensional space-time let us recall that our elhps01ds
should be connected with surfaces of rotating fluid bodies. In Newtonian mechanics
the statement that a rotating body has ellipsoidal shape is of universal meaning,
irrespective of the observer’s motion. In general relativity theory the shape of a surface
will depend on the observer performing its description, owing to deformations
resulting from relative motions. Consequently, the surface of a rotating body may look
like an ellipsoid for a limited class of observers only, and we must decide for which
one it does.

Notice then that for an observer comoving with the body the problem of deter-
mining its surface’s shape, i.e., of determining the direction normal to the surface in a
small neighborhood, is a problem of Newtonian statics. He merely has to find the v
vectorial sum of two constant forces: the gravity force and the centrifugal force. If
the observer resides inside the body and wants to determine the shape of equipressure
surfaces, then a third force, the hydrostatic pressure of layers above him, appears, but
the problem is still that of statics. Now, statics pursued in general relativistic language
and in the rest frame of the static system is just identical to Newtonian statics. We can
therefore reasonably expect that, in the local rest frame of an observer comoving with
matter, what was an ellipsoid in Newtonian theory will stay an ellipsoid in general
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relativity. The natural 3-space to consider the ellipsoidal figures of equilibrium in
general relativity is therefore the union of local rest spaces of the observers comoving
with matter, and (3.5) is the metric form of that 3-space. The metric 3-tensor .z
defined by (3.5) should be identified with:

haB = fug — Ulg (3.6)

where g,z is the searched space-time metric, and u, is the four-velocity field of matter.
We now define:

DerNITION 1. A space-time filled with matter is called ellipsoidal if the metric of
the local rest spaces of matter is given by (3.5). (This definition should be appropriately
modified if we want to relax the special assumptions about ellipsoids which led to (3.4)
and consider some of the problems.)

Having in mind the sources for the Kerr metric we shall deal only with those
ellipsoidal space-times which are at the same time stationary and axisymmetric.
However, here arises:

ProBLEM IV. What is the metric form of the most general ellipsoidal space-time ?

‘With use of 2.7), (2.8), (2.11), and (3.6) we find:

—hogdxdx? = gud” 2+ gond?® _
+ (800833 — &%3) Udp — (V/U) dt]? (3.7)

and this should be identified with (3.5). We have therefore:

(800833 — &%3) U? = (r® + a?) sin? I, (3.8)
gu = f3r, 9); (3.9)
goo = 1 + a? cos? ¥ (3.10)
dd =dp — (V/U) dt; . (3.1D)

and, since g gu*u® = 1 must hold:
8o U? + 280UV + g35V? = 1. (3.12)

The transition g,;— h,s is a projection, so the inverse transition A,z — g,z is
necessarily nonunique, and must involve an arbltrary function. Let this function be
g3, and let us introduce for brevity:

f
k? 2 & gss + (r? + a?) sin? 9. (3.13)
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Then, after the equations (3.8) and (3.12) are solved for g5 , we obtain:

ds? = [U(1 — kV)dt -+ k dp]?
— f2dr® — (r* + a® cos? 9) d9?
— (r* + @ sin® S[dp — (VJU) drP? (3.14)

where U, V, k, f are unknown functions of » and & to be determined from the field

equadons. Note that two.of the four functions are velocity components of matter
defined by (2.11).

4. EMPTY ELLIPSOIDAL SPACE-TIMES

In the above derivation it was necessary to have matter in the space-time to ‘define
the 3-spaces splitting into ellipsoids. Now it is easy to generalize the definition of an
ellipsoidal space-time to the vacuum-case: - ‘

DerFiNiTioN I1. - An empty space-time is called ellipsoidal if there exists in it any .
congruence of observers whose local rest spaces have the metric given by (3.5).

- (The remark following Definition I is still valid.)
- Both Definitions I and II give rise to:

PrROBLEM V. What is the operational method to recognize an ellipsoidal space-
time? '

The definitions suggest a straightforward way: If there is matter, find the metric of
its local rest spaces, and try to put it in the form (3.5). If there is no matter, guess first
which observers should have local rest spaces described by (3.5). This method is
effective if we are able to prove that some space-time is ellipsoidal. The essence of
Problem V is: how to prove unequivocally that a space-time is not ellipsoidal, when
it is not? How to get rid of the possibility that it is ellipsoidal, but we are not clever
enough to show it ? One would like to have some technical criterion, perhaps analogous
to Killing equations which are unique indicators of symmetries.

Here the Kerr solution [1] enters into our considerations. It is immediately re-
cognized as describing an- empty ellipsoidal space-time. The same is true for the
“Kerr solution with electric charge” found by Newman et al. [61], and we shall
consider this slightly more general case. Let us perform on the metric given in [61]
the following coordinate transformation:

u=1+ap — f [(r* + a%)/D] dr,
r=r', & =9,
»=9¢ — [ (@D dr,

def
D =r%—2mr + e + a2

(4.1)
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The result, on dropping primes, is:

2mr — é?
r2 + a® cos? ¢

(2mr — e?) cos® ¥
r? 4+ a? cos? ¢

ds* — (1 — ) dr* + 2a :[1 — ] dt do
s (@mr — e a? cos* &

2
+ [a. r2 4+ a®cos® &

r? 4+ a® cos® ¥
rt —2mr 4 e? + a

— (r? + a?) sin? 19] do?

dr* — (r? + a® cos? &) dv>. (4.2)

Comparison with (3.14) and (3.5) shows that this is an ellipsoidal space-time, with
the four-velocity of the observers referred to in Definition II given by:

U= [(*+ @)D}
V = gt[—Ugs 4 ad'/?]; (4.3)
4 =1 — Qmr — €% cos* #/(r?> + a® cos? 9)

where g,; and g,; should be read off from (4.2). The double sign in V" means that, in
the region 4 > 0, there are two congruences of observers fulfilling the conditions of
Definition II. The region 4 > 0 contains the whole outside of the ergosphere, g, > 0.
We shall not deal here with the regions inside the ergosphere and under the horizon as
they are supposed to be cut off from the space-time to make the place for a source.

The proper Kerr metric results from (4.2) and (4.3) in the case e = 0. It is then
represented in the coordinate system related to that of Boyer and Lindquist [43]
(tsz » ®51 » 'aL » Op) by the simple transformation:

. tBL = —f — a(P; (4 4)
Fpr = T, g = U, PprL — P.

This transformation shows that either 7 or i, is a “jumping” time. The clear geo-
metrical interpretation of #5; suggests that it is rather ¢ which jumps.

It is not clear what Newtonian structures correspond to the ellipsoids defined by
the Kerr solution. The most obvious suggestion is that the ellipsoids are relativistic
analogs of equipotential surfaces. The only known Newtonian source having confocal
ellipsoids of revolution as equipotential surfaces is an infinitesimally thin homeoid [56].
This is not a satisfactory source; one would like to “fill in” the interior of the homeoid.
This would be a problem both in Newtonian theory and in general relativity: how
to fill in the homeoid with some nonexotic matter (most satisfactorily a perfect fluid)
so that the structure of equipotential surfaces is preserved. There is also another
problem: the surface of a rotating body does not coincide with any surface of constant
gravitational potential. It is determined by the effective potential (gravitational plus
centrifugal), and is usually more oblate. So if we interpret the ellipsoids in the Kerr
metric as equipotential surfaces then we should not expect the surface of the source
to be one of these ellipsoids. This suggestion is supported by the fact proven by
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Roos [71] that a perfect-fluid source rotating in an arbitrary way cannot be matched
to the Kerr metric across the hypersurface rp; = const. It seems that here is the central
point of the problem.

It was already recognized by Misra [62], Tiomno [63], Newman and Winicour [64],
Florides [36] and Hogan [65, 66] that “the Kerr solution has something to do with the
external field of a rotating homeoid” (i.e., a body of spheroidal shape), Misra’s contri-
bution being merely the cited sentence. Tiomno [63] has shown that the Kerr—Newman
[61] electromagnetic field is identical to that of a rotating charged oblate ellipsoid of
revolution in flat space, with infinite conductivity, and magnetic susceptibility also
infinite or equal to that of vacuum. In Hogan’s papers [65, 66] the spheroids are
places where the Kerr—Schild [2] null geodesics originate. It is suggested there that the
spheroids do not rotate.- Newman and Winicour [64] have disdained geometrical
intuition, and hidden it behind formal computations. They have found that the
Kerr-Schild null congruence originates on the surfaces of confocal rotating oblate
spheroids, but they rejected the connection between these and the Maclaurin spheroids.
They recognized that their ellipsoids rotate with different angular velocities, but they
used Boyer’s condition for rigid rotation [15] to conclude (without clear arguments)
that the Boyer boundary may coincide with one of the ellipsoids only when the latter
is on the Killing horizon r, . Finally, we are in agreement with the approximate
result of Florides [36] who has shown that, up to fifth order in the Florides-Synge
method [32], the Kerr metric represents the exterior field of a rotating spheroidal body.
The focuses of his ellipsoids are 2 X 5%/2 a part.

In the end, let us illustrate the difficulties connected with Problem V by an example.
The Kerr metric has been generalized by Demianski [67] to include the cosmological
constant:

2mr
r? -+ a® cos?

ds? = [1 —_ 3 -+ %/l(r2 -+ a2 cos? 19)] dr?

2mr
r?2 + a? cos? &

+ 2asin? 8 | _ %/l(rz + a?)| dt de

2mra? sin? & 1
1 2 2 o 2 2
r2 -+ a%cos? ¢ ,(r—l—a)(l Z-S/Ia)]dqD

. r? 4 a® cos? 9
A2+ a®) r2 + r? — 2mr + o
r? + a® cos? &

— 2 ‘ |
— ey (4.5)

— sin? & [

dr?

(The same metric, in a different coordinate system, was independently obtained by
Frolov [68]. Another independent derivation due to Carter [69] gave a result dis-
crepant with (4.5), which indicates a computational error, most probably in [69])
Perhaps this metric is ellipsoidal, but if so, then the ellipsoidal coordinates (r, ®) from
(3.14) are related to the (r, #) above by a complicated transformation. Who will be
able to find it or disprove its existence ?
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5. AN ELLIPSOIDAL INTERIOR KERR SOLUTION — SOME REMARKS

As suggested above we should not expect that the ellipsoids rz; = const in the Kerr
metric describe possible surfaces of some sources. However, such a possibility was
discussed by a few authors. This possibility may arise if either the source is not
composed of a perfect fluid or the angular velocity of rotation (in the sense of Boyer
[15]) is singular on the axis (in both cases the proof made by Roos [71] fails). Con-
sequently it might be worthwhile to discuss this case at some length.

The fact that the ellipsoids which are supposed to be surfaces of some stars are
confocal might be objected to by an astronomer. In such a confocal congruence, the
smaller the ellipsoid is, the more it is flattened, while real stars tend rather to a reverse
correlation [70]. This is a spurious contradiction. An astronomer, when speaking
about small and big stars, has in mind objects of various masses and angular momenta.
If the exterior gravitational fields of stars are described by the Kerr metric, then by a
big (small) star an astronomer means a star with big (small) m necessitated by big
(small) size. In our case we keep m and a fixed, and compare the shapes of stars with
the same mass and angular momentum, differing only in size. It is clear that if a body
is squeezed to a smaller size then to retain its initial angular momentum ma it must
speed up its rotation. In such a situation, when r — 0, the centrifugal force on the:
equator grows as r—3, faster than the gravitational force, so the oblateness of the bod
must increase. '

Since the ellipsoids are described by r = r, = const in a local subspace of both the
Kerr metric and the interior metric, these metrics should be matched across the
r = ro hypersurface, with r, allowed to vary in some finite range (limited by physical
properties of matter, forbidding the star to be too small or too big). The ¥-dependence
of the two metrics on the bounding hypersurface should then be identical. Conse-
- quently, the most obvious guess for the interior metric is to assume that it all depends
on ¢ in just the same way as the Kerr metric does. Such a guess was verified by the
present author (unpublished). A trial metric was arranged which was of the form
(3.14), and had unknown functions of 7 in all the places where the Kerr metric had
constants or definite functions of r. For instance, g,, from (4.2) was substituted by
[H(r) + cos*P)/L(r), g1, by {M(r) — P(r)/[N(r) + cos? 9]}, and so on. Then the
metric was substituted in the field equations for a perfect fluid: R?; = (x/c?) T —
36%T) 4 A8%;. Only those equations were used which had zero on the right-hand side
(in this way no assumptions concerning e and p were needed). They were easily
arranged to be of the form P(cos?#) = 0, where P(-) was a polynomial of 12th or
14th degree in cos?d, and its coefficients were differential expressions in r. After the
coefficients were equated to zero one by one, the whole problem reduced to a set of
about 60 ordinary differential equations for 9 unknown functions of r. They were
highly complicated, but nevertheless possible to solve with much effort. It appeared
that the only metric of thiskind is the Kerr metric itself. A perfect fluid source cannot
be so similar to the Kerr solution; it must depend on & in a more tricky way.

This conjecture is confirmed by the Demianski’s solution (4.6) because the A-term
imitates a primitive energy—-momentum tensor somewhat similar to that of a perfect
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fluid. However, it should be verified if the simple guess would work for an energy-—
momentum tensor of mixed perfect fluid—electromagnetic field type, since the Kerr——
Newman metric (4.2) is just of the guessed form.

A simplified version of the presented procedure (only 7 changed to an unknown
function of r) was used by Giirses and Gursey [41], and by Collas and Lawrence [42]
to construct a nonperfect fluid source of the Kerr metric (see Section 1).

The negative result described here explains at once the failure of Hernandez’s
efforts [17-18] (see also Section 1). He pursued essentially the same guess, but forced
some of the functions of r to be different from those in the Kerr metric, and obtained
a contradiction. This means of course that the guess was incorrect, not that the Kerr
metric has no fluid source, as Hernandez tried to suggest. Nature is wiser than we are
and if we find ourselves unable to solve some problem this is a statement about our
abilities, not about Nature. The author’s opinion is that the efforts along the lines
presented here should continue. Destructive statements denying the existence of a
material source for the Kerr metric should be rejected until (if ever) they are reasonably
justified.
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