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Abstract. It is argued that in the further development of cosmology the overidealized assumption

leading to Friedman-Lemaitre models should be gradually relaxed, and substituted by more realistic
ones taking into account the departures of the real Universe from perfect homogeneity and isotropy.
The paper presents the mathematical formalism for treating a class of irregular models: those
with nonzero vorticity. A short account of history of the problem is given. Then the invariant types
of motion of a continuous medium (expansion, rotation and shear) are presented, firsi in the
Newtonian, and then in the relativistic hydrodynamics. The isentropic motion of a perfect fluid
is dealt with in more detail. Plebanski’s formalism for treating the isentropic rotational motion of
a perfect fluid is presented. )

1. ROTATION AND COSMOLOGY

Among all cosmological models found up to now the homogeneous and
isotropic models of Friedman-Lemaitre appeared best. They describe very
well the general, large-scale properties of the real Universe. However, they
contain many unrealistic, highly idealized assumptions discussed in my former
article. For instance, in an exactly homogeneous and isotropic Universe no
galaxies mdy form, as the condensations of matter produced by random
fluctuations of density grow too slowly to form sufficiently dense systems in the
bounded time of 10 years (Weinberg 1972, Jones 1976). Even if a galaxy
is produced by an unexplained, artificially introduced perturbation then the
other problem remains open: why do the .observed galaxies rotate if the
primordial matter of the Universe did notrotate? This problem led Gamow
(1946) to the following suggestion published in a letter to “Nature”: the rotation
of stars is explained by the fact that they condensed out of a rotating galaxy.
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also that the velocity of the fluid v;(x;, £) is a well-defined differentiable function
of the space-point and of time, thus the velocity is a vector field on the region
of space considered. We have:

dx;(t)
dt

where x;() on the left-hand side is a coordinate of a chosen particle of the
fluid. (Note the difference: x; is a function of time on the left because the
motion is described by the sequence of values which the coordinates of the
particle assume during motion. The x; on the right does not depend on time:
it is attached to a fixed point of space. The derivative on the left is calculated
at that x;(¢) which, in the moment ¢, coincides with the x; on the right.)

Now let us choose a particle P of the fluid and assume that in the moment #
it occupies the point x;, i = 1, 2, 3. Let us choose another particle Q which,
in the same moment t, occupies the nearby point (x;+ dx;) where dx; is assumed
small. The particle P has the velocity ;(x;, #), the particle Q has in the same
moment the velocity v;(x,+ dx;, ). Consequently, exact to terms of first order
in dx;, the particle Q moves relative to the particle P with the velocity:

(”QP)j = ’Uj(xi‘l“ 0x;, t)—'vj(xia ) = V5,1 (X;, 1) 0%, 0(6%) , 2

where the comma denotes the partial derivative, summation over repeated
indices from 1 to 3 is assumed, and O(6%) denotes terms of the order of 2
and higher in dx;.

It follows that at the moment (¢4 df) the particle Q will occupy, relative to
the particle P, the position given by the vector:

'+ 8x; = 0x;+ (Vgp);dt+ O (dt?) = x4 'v.,kéxkdt-l— 0 (82, dr?)
= (0p+0;,dt)ox,+0(0%, dt®), (3)
where d;; is the Kronecker delta. We see from (3) that the matrix v; , determines
the velocity with which two nearby particles move relative to each other.
If we decide to use solely cartesian coordinate systems, then the matrix v,

may be split into three parts, each of which transforms independently of the
two others when we change one cartesian frame to another:

Uik = Ot Oyt 30,.0 4)

=0,(x;,8), | (1)

where:
0 =, _ (5)'
is the trace of the matrix, -
0 = 5V k404 ) — 30,0 (6)
is the trace-free symmetric part, and
0y = F(0)— Vi) , - (7)
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is the antisymmetric part. This is a purely formal partition which may be done
for any tensor of second rank. Here however each of the terms has a kinematic
interpretation. This interpretation is easiest to see when each of the terms
is singled out in its pure form. For this reason we shall con51der three types
of motion separately

First lest us assume that w, = o, = 0, @ % 0. Then the formula (3) yields:

= (0t 36, 0d1) éx,+ O (62, dt?)

= (14 £ 6dt)éx;,+ 0 (62, dr?) . : ®)
The new vector dx; has here the same direction as dx;, but a different length,
and }0 is the logarithmic derivative of the length of dx; with respect to time.
Consequently, in this type of motion each two particles recede one from the
other (or, if ©® < 0, approach one another) along the straight line joining them.
Such a type of motion is called isotropic expansion, and @ is called the scalar

of expansion.
Let us next consider such motion in which ©® = 0, ¢, = 0 # ;.. Then:

6x; = (Ot wy dt) 03,4 O (62, dt?) - €))
Let us find the length of the new vector of relative position:

8" = (6x; 6x;)"?
= [0+ @y dt) (84 wydt) 6x,6x,4- O (63, de?)]
= [(04+ o dt+ wy dt) - 8x,0x,+ O (83, d2)[42
= [6x,6x,4- O(8°, dt*)]'* (10)
— (8, 0% 2 O (8%, dt2) = 51+ O(8%, dr?) ,
where we have used the fact that wy+ oy, = 0. Cohsequently, the length of
the vector dx;, exact to térms of order O(62, df), does not change in this

type of motion at all. To see what happens with the direction of 6éx; let us
take the increment (8x;— dx;) and find its scalar product with dx;:

(0x; — 0x,)0x; = w,, dt6x; 0x;+ O (82, dt?) = 0+ 0(83, dr?), (11)

where again antisymmetry of w,, was used. So with the same precision, the
increment of dx; is perpendicular to dx;. The properties (10) and (11) are
characteristic for pure rotational motion, so in this case two nearby particles
rotate around each other. The term o, is called the rotation tensor.

Let us see what the angular velocity of their rotation is. Let the searched:
angular velocity vector be @. We have:

Vop = @ X8X (12)
in other words: ,
(Vop); = €5a®;.0%; . ’ . (13)
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But: : P .
(Vgp)i = wydx;. : (14
Hence: : ‘ .
Wy0%x; = £5q0,0X; . o o (15)
This is an identity in dx;, consequently:
Wy = — & WO - ‘ | (16)
Reversing this and using the formula (7) we obtain:

— 1 S ‘ : ;
A O = 2Em Oy = %‘%kl"’lk ‘ , ey
what means:

©=7%rotv. : ’ . ,(i8)

The equations (16) and (17) establish the unique correspondence between
the angular velocity vector @ and the rotation tensor w;. This justifies the
name of w;. 4

Finally, let us take the case @ =0, w,;, = 0 # a,k Let us consider four
nearby particles, and three vectors 6x, 8y, 6z joining one of the particles to
the three others. Then, by an ‘easy but tedious calculation it may be shown
that the quantity e 0x,0y,0z, = 8x-(8y X8z) is preserved during the motion.
This means that the volume of the paralellcgram spanned by &x, 8y ard 8z
is constant during the motion, though its shape is in general not preserved

!

4. THE MOTION OF A CONTINUOUS MEDIUM
IN RELATIVISTIC HYDRODYNAMICS

The motion of a fluid in general relativity is described similarly as in Newtonian
theory. We assume that through every point x* of a region of spacetime there
passes the world line of one particle of the fluid with a well-defined four-
velocity u*(x?), where:
dx*®
ds

i | (19)

s being the proper time on the world-line considered, and x°(s) are the
coordinates of the flowing particle. (Note the remark after formula (1), it
applies here with # changed to s, and “time” changed to “proper time”.)
Since u® is tangent to the world-hne all the vectors perpendicular to world-lines
obey the equation:

GoptAF =0 . | (20)
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Notice now that the matrix:
. def

Hg = 05— s (21)

projects all the vectors onto hypersurfaces locally orthogonal to u% i.e. for

def
every four-vector B° the vector B“ = hiB* obeys the equation g,u* B} = 0.

Moreover, Au® =0, and g,B, B} = haﬁB # which means that h acts

as the metric tensor in the hypersurface locally ortho gonaltoa world-hne

If we choose the lines of the time-coordinate x° so that they coincide with the
stream-lines of the fluid (what is always possible) then the condition Zgu; = 0
means that x° remains constant when we stay within the hyperstvrface locally
orthogonal to u® Therefore, for this specific choice of time, that hypersurface
contains the events simultaneous with the event on which it intersects with
its orthogonal u*line. Let us remember however that in general (just when
#* has nonzero rotation as defined below) the hypersurface is crthogonal to
only one world-line, and consequently it defines the collection cf events
simultaneous with the given one only in a small neighbourhocd of that
event. :
Now let us choose one world-line P, and let P, be the point of P to which
our particle following P arrives in the moment s of its proper time. Let Q,
be a point not too distant from Py, lying on a neighbouring world-line Q,
and let dx° be the four-vector joining P, to Q,. The event of line Q simultaneous
with P, will be joined from P, by the vector: :

8, % = h3(Py)oxP . (22)
The vector ¢, x* gives consequently the spacelike orientation of two nearby
particles of the fluid. The velocity of the point P, is u%(x?), the velocity of the
point (x*+8,x%) on the line Q is u*(x’+6,x”). Thus after the time ds the
particle which was at the point Py = {x°} in the moment s will move to the point
x'* = x*4u’(x°)ds, while the corresponding particle on line Q which was
at the point (x*4-9, x*) will move to the point:

X% = x40 X [P+ 0, x| g upans S . (23)

The symbol [ 1l PP denotes the parallel displacement of a vector

attached at the point (x*-+6, xf) to the point (x%) (only then it can be added
to the vector 8, x* attached at the point (x?), otherwise, as is well known
from differential geometry, adding two vectors attached each to a different
point would make no sense). It is known that:

[ (x*+ 0, xp)]pcﬂ+6.l.x5—>xﬁ = ua(xﬂ)‘l" u’, 6, x40, 249
where the semicolon; denotes a covariant derivative. Thus in the moment

(s ds) the event on line Q simultaneous to the event x'* from the line P will
- occupy relative to x* the following position: .

5_|_x,a — x"“—-x'_“ — 6_|_-xa"|_ ua;ealxgds_l_ 0(62) )
' = (6341, ,)dsd  x*+ O(8?) . (25)
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However, not the whole matrix «°, , effectively enters the formula (25). Let us
-make the following substitution (which is just an identity):

u',, = u’, 0 = u”, (h{+u’u,) . (26)

s Q

We see that only the first term in parentheses gives nonzero contribution
to (25) since u,0 lx = 0. Therefore: -

= (041, Hds)d 0+ O() . @7

Comparing this last formula with (3) we see that the matrix u% 4 plays the
same role in relativistic hydrodynamics as the matrix v, did 1n Newteman
hydrodynamics. Now the same partition into three mdependent parts may
be done:

ua;ghg = Gaﬁ_’— O)ap—!" %Ohaﬂ’ > | | (28)
where:
O =uw, 1=, (29)
waﬂ = %(ua;g hg_ uﬁ;g hg) (30)
Gaﬁ :4%(2’101;9 hg_!_ uﬁ:@ hg)— %@haﬁ y (3 1)

The three terms have here exactly the same interpretation as the corresponding
Newtonian terms denoted by the same letters in formulae (5)—(7). The
rotation tensor has here the following explicit form:

Wap = %(ua;ﬁ— Ug @ Uz uguﬁ_l_ Upso ugua) = %(ua,ﬁ_ uﬁ:a—— ila uﬁ'}— i‘ﬁ ua) ’ (32)

. def . .
where the vector u* = u® , u® is called the acceleration vector. We have
substituted partial derivatives for covariant ones because in such an anti-
symmetric combination the connection terms cancel out.

5. ISENTROPIC MOTION OF A PERFECT FLUID

The energy-momentum tensor of a perfec’t fluid has the form:
T7 = (e+p)u,u’—pd (33)

where ¢ is the energydensity and p is the pressure of the fluid. The quantity
(e+p)is the enthalpy density. This tensor should fulfil the following equatlons
of motion:

’ Taﬁ;ﬁ = 0. | O
Independently of (34) we assume that in addition the total rest-mass of particles
of the fluid is constant, i.e. no particles are created or destroyed. This
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assumption is specified by the additional equation:

(Quﬁ);ﬁ =0, ‘ (35)

where ¢ is the rest-mass density.
Let. us introduce the following definition:

H=(+pjoct. 36

It is a dimensionless quantity which equals the enthalpy per unit rest energy
of the fluid. Using (33), (36) and (35) we may write equation (34) in the form:

ocuf(Hu).,—p,=0. (37)

We shall now assume that the fluid is chemically homogeneous, i.e. that it is
composed of identical particles. Then pc?/n = myc? = const where 7 is the
density of number of particles, and m, is the mass of one particle. In this
case the enthalpy per unit rest energy, H, is proportional (with the constant
coeflicient n/oc?) to the enthalpy per unit particle which will be denoted By Je.
This other quantity obeys, in the conventional nonrelativistic thermodynamics,
the following identity:

d¥ = Vdp-+Tdo = n-‘dp+Tdo , (38)

where V' = n~" is the volume occupied by one particle, and ¢ is the entropy
per unit particle. Consequently:

dH = (oc?)*dp-+T4ds (39)

where this time the entropy S is calculated per unit rest energy. The equation
(39) may be taken as the definition of temperature and entropy in general
relativity (see details in Krasifski 1974). Hence we have:

Do = 0c¥(H,,—T8S,,) . : (40)
Substituting (40) in (37) we obtain: '
o [\ Ht) y— H TS, ] =0 - (1)

. Now we can insert the factor #’u; = 1 by H,,, and the additional term
—Hifug,, = 0 in parentheses. Then (41) reads, after cancelling gc?:

O = W’[(Hu,),;— H, ;us— Huy, ]+ TS, , \
= uﬁ[(H )9;3 (Huﬁ): a]_[_TS:a . (42)

This form of the equations of motion is equivalent to (34). We call the motion
isentropic when S = const. Then:

[(Hu,), g— (Hug), Ju = 0. (43)
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Then from (39) we also conclude that H and ¢ are functions of p, and:

d(8+p> —ag=" . (44)

oc? 902

Integrating this equation from 0 to p, and assummg the 1n1t1a1 condition
’e(O) = 0(0)c* we obtain:

1 f dﬁ
H=14+—| —. 45
¢t o(P) 3

The equations (43) and (45) describe the isentropic motion of a perfect fluid.
In the case of dust (matter interacting only gravitationally) we have p =0
and H = 1. Then the equations of motion (43) follow dlrectly from (34) and
assume the simple form:

(u, p— uﬁa)u =0. ) (46)

6. ISENTROPIC ROTATIONAL MOTION

- The equations (43) admit as a special solution:
(Hu,), ;— (Hut),, = 0 . (47)

Such motion is’ called irrotational. If however (47) is not fulﬁlled. then the
solution of (43) is less trivial, and the motion is called rotational. 1t may
be shown (Krasiniski 1974) that then:

(Hua), 8 (Huﬁ), a — 2Hwaﬁ Py (48)

where w,s 1s defined by (32). Consequently, the distinction between rotational
and irrotational motions intrcduced above is consistent with that based on
kinematics.

When (47) is not fulfilled then it may be shown that the equations (43) imply
the existence of three scalar functions (v, &, %) such that: :

Hu, = 7, ,+1§,, (49)
(Krasinski 1974). Then:

2Hwaﬁ - 5: a'y}aﬁ é:a ﬁnaa . (50)

Since the gradlents &,,and 7, are linearly independent (otherwise (47) would
be fulfilled, contrary to our assumption), the equations (43) and (48) imply:

wé,,=un,,=0. : Y
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We see that (4% &,,, 7,,) form a triple of linearly independent vectors. Con-
sequently, a fourth vector {, may be adjusted to them so that:

(— g)"Pou* = e, 41, L5, (52)

where ¢ is the determinant of the metric tensor, and & is the four-dimensional
Levi-Civita symbol. So far {, is just a vector obeying (52). With use of the
equation (35) rewritten in the form (— g)™*[(— g)"*%0"],, =0 it may be
easily shown (Krasiniski 1974) that the vector {; may be chosen so that it is
: equal to the gradient of a scalar function which we shall also denote by ¢,
i.e. {; = {,,. Consequently:

('—'g)l/z@ua = 8apy8§9/377:7€96 . (53)

We see that the gradient of ¢ is linearly independent of #° &,, and 7,,, so the
function ¢ is independent of 7, & #. We have therefore four independent
functions (z, &, 5, £) which can be used as new coordinates:

W=7, X=£&, =75, xX*=¢C. (59)
They are determined up to the following transformations (Krasiﬁski 1974).
3;" = x¥— S(xY, x?)
= F(xV; x*)
= G(xV, x2") (55)
x3 = x¥+T(xV, x¥'),

where the function T'is arbitrary; while F and G are connected by the equation:

F, ) Gp—F G,y =1. (56
The function S is determined by F and G through the equations:
| S,y = GF,,—x*, S, =GF,,. (57)
In these coordinates the equation (53) assumes the form:

(—9)Pou* = & o (58)
the equation (49) goes over into: . |
= (93+ x26‘) H™ (59)

and taking the scalar product of the equations (58) and (59) we obtain, by
virtue of vy, = 1:

(— 9)%H =1. (60)
Consequently: , .
. g=—oH™ 4 (61)
and (58) yields:
u* = Hoj.. ' - (62)

9 — Acta Cosmologica z. 7
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But u, = g,,4% so (59) and (62) imply: | .
Goo="H™2, gou=xH2 goo=0¢os=0. (63)
In these coordinates the relativistic vorticity vector '
wa g L (_ g)—1/2 saﬁyauﬁ uy,é
assumes the. form: ' 7 4 . '
w® = oH 165 . (64)

The method of description of isentropic rotational motion presented here
(introduced by J. Plebanski, 1970) was used to obtain a series of new solutions
of the Einstein field equations (Krasifiski 1974 and 1975). Unfortunately, they
were again nonrealistic because of their stationarity. The coordinates defined
above are well suited for comparing existing solutions because theire exists
an explicit prescription for constructing these coordinates. However, they
have two defects: ' |

1. The otherwise simple solutions, when represented in the coordinates
(61)—(63) become in general rather complex.

2. These coordinates do not exist for a fluid-moving irrotationally, and so
one cannot pass to the limit of zero rotation without changing to another
frame. ' '

For these reasons it is not clear if the method presented here will prove useful
for cosmology. An attempt to use it for constructing a realistic model of
a rotating Universe will be presented in my next article. A success by that
attempt would be the first physically interesting result obtained by this method.
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