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CYLINDRICAL ROTATING UNIVERSE

Andrzej Krasinski

Abstract, The method presented in the author’s other aiticle in this issue is applied to the special
case of cylindrically symmerric rotating and expanding cosmological models. It is argued that
they are the simplest rotating generalizations of the Friedman models which contain no additional,
independent of matter geometrical structures, as opposed. to the Bianchi-type models. The assumed
symmetries of spacetime, together with the simplest field equations are used for simplifying the
metric tensor as much as possible. The paper ends in the place where new simplifying assumptions
appear necessary for further integration of the field equations.

1. WHY SHOULD ONE CONSIDER CYLINDRICAL MODELS
WITH ROTATION?

In the beginning let us recall two facts discussed in my other article on
cosmological models in this issue:

1. The observational support for the assumptlons of Friedman-Lemaitre
models is in general very inexdct and uncertain.

2. Yet the Friedman models are the best of all existing models: they lead
to results satisfactorily consistent with observations, and they even allowed
the prediction of at least one effect (the relic radiation) before its discovery

. became commonly known.

The first fact implies that we should not content ourselves with Friedman

models, but look for new models founded on less idealized assumptions

which might eventually explain why the Universe is so highly regular (if it
really is). The second fact shows however that the departure away ‘from
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Friedman models should not be too radical. The natural first step will then
be to look for such models which violate the assumptions of spacelike
homogeneity and isotropy as little as possible. For this reason much care has
recently been devoted to the homogeneous Bianchi-type models. They violate
only the assumption of isotropy, so they could seem to be the most natural
generalization of the Friedman models. In some of the Bianchi models the
matter may rotate. However, when rotation is present, the term “homogeneity”
should be treated with some caution, since then it has a different physical
- meaning than in the Friedman models. In all the Bianchi models there exists
a distinguished vector field e” which defines its orthogonal hypersurfaces.
These hypersurfaces are just the homogeneous spaces. In the Friedman-like
models the velocity field of matter is colinear with e° which means that the
homogeneous space is at the same time the rest space of matter. No geometrical
structures independent of matter are needed to reveal the spatial homogeneity
of the spacetime. In models with rotation the velocity of matter cannot be
colinear with e since ¢’ is irrotational being orthogonal to a congruence:
of spaces. It means, there exist in such models God-given preferred to certain
observers for whom the Universe looks especially simple. It is not a decisive
argument against those models, but this observation shows that two different
properties were categorized by the same label “homogeneity”, and that this
word should not be used mechanically. If we take a po‘rtion of matter described
by the Friedman model, and set it into rotation, then it is by no means obvmus
that a Bianchi-type model should result.

In the present article a new class of cosmological models will be presented:
the cylindrically symmetric rotating Universes. They are free of the
aforementioned drawback, while on-the other hand they also violate the simple
assumptions of Friedman models only to a mcderate degree. Their bad feature
is that they do not encompass the closed model,  as will be shown in
section 2.

In the rotating matter no isotropy may survive, since at every point of spacetime
there is the distinguished direction of the vortex. The only remnant of isotropy
may be the axial symmetry around the Vorticity vector. The homogeneity
along the direction of the vortex may be assumed a remnant of the
3-dimensional homogenelty of the Friedman models. Consequently, we have
here only two Killing vector fields.

The model of the Universe obtained under such assumptions will not be fully
satisfactory, as the galaxies produced in it would have their axes of rotation
aligned, while real galaxies apparently do not (Jones 1976). Neither is it obvious
that such a model would at all permit a description of galaxy formations in
a way better than Friedman models do (where in principle no galaxies may
form, Jones 1976). However, it is better to have a model in which the galaxies
rotate parallelly than a model forbidding rotation at all.
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2. CYLINDRICALLY SYMMETRIC SPACETIMES

The preferred coordinates 1ntroduced in my lecture about 1otational motion
will be used here. :

‘We shall assume that cylindrical symmetry is characterized by the following
four propertles

A. There exist two K1111ng Vector fields 'k and % of which k corresponds to
. S @ () @
axral symmetry, and k generates translations parallel to the symmetry axis;
()

B. k* = f(x)8¢, where f(x) is a function, possibly of all four coordinates;
)

C. [k, k] =0;

.2 (@)

D. g,,k*k* = 0.

@ @
The properties A, C, and D need no explanatron as they simply reflect the

symmetries of a cylindrical surface from Euclidean space. The property B,
in virtue of eq. (64) from my former lecture, means that the symmetry axis
coincides with the rotation. axis.
We can now easily see that of the Bianchi models only those may be
cylindrically symmetric which contain a two-parametric abelian subgroup
whose generators obey condition D. Only the models of types VIII and IX
do not contain abelian subgroups (Collins and Hawking 1973). There is no
reason to worry about type VIII, but unfortunately type IX contains the
closed Friedman model.” Thus we see that the closed Friedman model
generalized for rotation cannot be handled by the method presented here, it
was excluded by assumption C.
Tt may be shown rather easily that if a metric tensor is preserved by some
symmetry transformation, then so is the Riemann and Ricci tensor, and the
curvature scalar, consequently also the energy-momentum tensor.” Now,
pressure and density of matter are eigenvalues of the energy-momentum tensor
of a perfect fluid, so they are invariant under the same symmetry transform-
ation, too. It follows that the four-velocity of the fluid is invariant, being
an eigenvector of the energy-momentum tensor, and the vorticity vector is
invariant, being invariantly constructed from the velocity vector. Thus, if we
deal with the field equations for a perfect fluid, we have in addition to the
properties A—D: .

k"g,—kH ——kg,—kH =0, ‘ g

@ ) (2) - @
where H is defined by eq (45) in my former lecture, and:

[k, u] = [k, w] = [k, u]l = Tk, w] = ()
@ . ()] - (2 ' (Z)

where u and w are the velocity and voitex vectors 1espect1ve1y
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Using these equations, together with some Killing equations and the pro-
perties B and C one can show that our special coordinates from the founer
lecture may be further specialized so that:

o % ©

f=509. | 4

The detailed proof is easy, but long and involved, so we shall omit it here

(it will be published elsewhere, see Krasifiski 1976). In such a coordinate
system the property D simply means:

g3=0. ' ' (5)

Equation (3) implies that in such a coordinate system the metric tensor snnply
does not depend on x*. Equation (4) shows that if one performs the transfor-
mation:

X=x"i=1,2,3,

X = fa)

then the transformed metric will not depend on x% as k* = f(x?)6% turns

(6)

: (2)
after such a transformation into k* = 6%. The transformation (6) does
@
not belong to the class given by equat1ons (55)—(57) in my former article,

so it will result in a change of some properties of the metric tensor specified
by the equations (61)—(63) there. Namely, after this transformation the
determinant of the metric tensor will be equal to:

— —f%*H® o (7)

while the vorticity vector will change to: _
W = ef‘lH“’é" (8)
So formally the result of transformatlon (6) is equivalent to the substitution:
’ — def
e—>e =olf o ©)

made on the left-hand ‘,side of the field equati,onsA.
The coordinates in which the equations (3—35) and (7—8) hold are specified
up to the following transformations:

X0 =x"—C f X¥'F, o dx?
Xt = C-LV'+ F(x¥)

x% = Cx¥ ‘

X% = x¥+T(x),

where F and T are arbitrary functions of one variable, and C is an arbitrary
constant.

(10)
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Up to this place the Einstein field equations were not explicitly used (except
for the statement of invariance of ¢, H, u and w). Three of them can now be
relatively easy integrated (see details in Krasinski 1976) giving the result:

Jo3 = 0(X%) g3 , | (11)

where a(x?) is an arbitrary function of one variable. Now it is possible to
perform transformation (10) with:

T(xt) = — [ a(x?)dx? (12)
to obtain:

ggg - O V (13)

in the new coordinates. After such a transformation the remaining freedom
of choice of the cooidinates is given by (10) with 7 = const.

Thus we have shown that cylindrically symmetric rotating models considered
here have the following metric form:

ds* = H~dx%)?+ 2x*H ~2dx°dx*+ g, (dx*)2+
2010 AN Gan( XN gy (dX9)? 4 (14)

where all the components of the metric depend only on x° and x3, and the
~equation (7) holds. :

The remaining, unsolved field equations are so complex that it is rather hopleess
to integrate them without any additional simplifying assumptions. The simplest
- and self-suggesting assumption is a shearfree motion of matter, 0,5 = 0.
Indeed, the Einstein field equations appear possible to integrate in this case,
but the result is of no interest for cosmology, as the solution is stationary,
having no expansion. The corresponding stationary solutions were found
and investigated (Krasifiski 1974 and 1975). Therefore one could try to find
the nonstationary solutions by inserting unknown functions of time in place
of arbitrary constants from the stationary ones. ThlS is however a purely
calculational guess, with no physical justification.

It is at present an open problem to construct an explicit, completely solved
model of an expanding and rotating Univetse. Its finding could supply useful
information about the behaviour of the Universe near the initial singularity.
It is hoped that the paper presented here is a first step towards this aim.
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