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The equations of isentropic rotational motion of a perfect fluid are investigated with use of Darboux’
theorem. It is shown that, together with the equation of continuity, they guarantee the existence of
four scalar functions on space—time, which constitute a dynamically distinguished set of coordinates.
It is assumed that in this coordinate system the metric tensor is constant along the lines tangent to
velocity and vorticity fields. Under these assumptions a complete set of solutions of the field
equations with 7, = (¢ + p)uu; — pg, is found. They divide into three families, first of which
contains six types of new solutions with nonzero pressure. The second family contains only the
Godel's solution, and the third one, only the Lanczos’ solution. Symmetry groups, exterior metrics,
type of conformal curvature, geometrical and physical properties of the new solutions are
investigated. A short review of other models of rotating matter is given.

INTRODUCTION

It was not long after the creation of the general rela-
tivity theory that people tried to construct a solution of
the Einstein field equations for rotating matter. The
problem was interesting both from theoretical and
observational point of view because nobody knew how
to describe the rotational motion in the formalism of
general relativity while many stars and galaxies ex-
hibited visible rotation. Today even the possibility of
rotation of the universe in the large is admitted.!

However, for quite a long time models of rotating
matter were constructed under very special assump-
tions. The authors either used the method of “slow
rotation” approximation (first paper by J. Lense and
H. Thirring? in 1918) or assumed the energy- momentum
tensor corresponding to dust (K. Lanczos3 in 1924 and
many others). It was not till 1967 that M. Trimper4
clearly stated the problem of searching for solutions
with pressure different from zero, but he has just
written down the field equations and stopped after
arriving at some general statements. There were a
few papers whose authors went further but they left
the problem behind when the equations were simplified
and nearly integrated (i.e.,there remained only one or
two equations to be solved). They gave at most special
cases of solutions which were mathematically simple
(e.g., J. Stewart and G. F. R. Ellis,® J. Wainwright. 6)

Until 1972, in fact, just two complete results were
obtained—by H. D. Wahlquist? in 1968 and E. Herlt8 in
1972. The aim of the present paper was to supply new
metrics of this kind. I have used the method of descrip-
tion of the isentropic rotational motion of the perfect
fluid introduced by J. Plebanski.® Under the assumptions
which are clearly stated in Sec. 1, the field equations
were completely integrated. The resulting metrics
divide into three families, the first of which contains six
types of new solutions with nonzero pressure. Each of
the other families contains just one solution known
before.

’

The first family solutions are investigated in detail.
Their symmetry groups, exterior metrics, type of con-
formal curvature, geometrical and physical properties
are established and discussed. A few special cases are
investigated in more detail. I also give a short review
of the solutions found by other authors.

Most of the material presented in Sec. 1 is taken from
J. Plebaniski's paper.?
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1. THE EQUATIONS OF MOTION AND
DYNAMICALLY DISTINGUISHED COORDINATES

Throughout the paper we shall use the signature

(+———). The equations of motion of a perfect fluid have
the form:

Teb 5 =0, (.1
where

ToB = (e + p)ucub — pgob, (1.2)

The quantity (€ + p) is called the enthalpy density. Let
JC denote the enthalpy per unit mass,

3= (e + p)/p, (1.3)
where p is the density of the rest-mass. Independently
of (1. 1) the conservation of the total rest mass is postu-
lated:

(pux),, =0. (1. 4)

i

By virtue of (1. 3) and (1. 4) Egs. (1. 1) take the form

O:Taﬁ;B:puﬂ((}Cua);B—p)a, (1.5)
The enthalpy in phenomenological thermodynamics
obeyed the following identity:

dx = (1/p)dp + TdS. (1. 6)

This equation may be considered to be the definition of
temperature and entropy in general relativity, Namely,
only two of the state functions (¥, p, p) can be indepen-
dent. Therefore the form (d3¢ — (1/p)dp) has an integ-
rating factor which we denote by 1/7T and its inverse we
call the temperature. Then the form (1/T)(d3 — 1/p)dp)
is a total differential of a function S which we call en-
tropy.

With the help of (1. 6) we get in (1. 5)

plut (Ru,),, — % , + TS ]=0.

17

Now the identities u*u, =1 andubu, = 0 allow us
to write (1. 7) as

[(eu,) ,— (u,) Jub+ TS _ =0, (L. 8)

These are the equations of motion of a perfect fluid in a
form equivalent to (1. 1),
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We shall confine ourselves to isentropic motions,
where S = 0. Then (1. 3) and (1. 6) imply

d[ (e + p)/p]=(ap)/p. (1. 9)

We see that de = [(e + p)/pldp and so € = €(p), p=p(p);
in other words, p = p(p) and € = €(p). Thus (1. 9) is an
ordinary differential equation, and we can integrate it to
obtain

1 (2 dp
€+ p=pc? (H + = ———>
® ez Js a(p)

where H, = const. If we assume that €(p = 0) = p(0) c2
then H, = 1. Let us denote

(1.10)

def 1 p dp
HE g+ [7 L2, (1. 11)
O ez 0 p(p)
Then Eqs. (1. 8) with § | = 0 take the form
[(Huy) o— (Hug) ,Juf =0. (1. 12)

Now we recall two theorems which will be useful later.
We give both of them in the special case of a four-
dimensional manifold. Their general forms can be found
in Refs. 10~-12.

Theovem 1 (Darboux): Let w be a differential form
of the 1st order, then

(1) (dw A dw = 0)<=> (there exists the set of functions
o, 7, £,n such that w = od7r + nd§);

(2) (dw A dw = 0but wAdw = 0)<=> (0 =1 above);
(3) (wA dw =0butdw » 0)<=> (£ =1 in (1));
(4) (dw=0)<>(c=1¢t=1in (1)

Its proof is given in Ref. 10.
For an antisymmetric tensor F g the following form
can be defined:

Pf(F ) =5 €285 F ,F ; (1.13)

where €« #7 % is the Levi-Civita symbol. We have
Theorem 2:
[PF(F ,5)]2 = det(F ).

The proof can be found in Refs. 11 and 12.

def

Now let F 4 = (Hu ) o — (Hug) .. We see from
(1. 12) that det(F ,z) = 0 and so from Theorem 2
Pf(F ) = 0 which means that F(, 4 F, 55 = 0.

Let us define w = Hu dx®. Then F_gdx® A dxB =
— 2dw, and so dw N dw = 0.

Now Theorem 1 implies that there exist functions
7, t,n such that w = d7 + ndé, i.e.,
Hu =71, +tng (1. 14)

o ?

Foap (1. 15)

il

EaMp &80 a-

This representation of Hu , is introduced and discussed
in more detail in Ref. 9.

When F , = 0 we call the motion irrotational. When
F_ g =0 we call it rotational. To distinguish rotational
and irrotational motions we can use as well the vorticity
vector w*:
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we :——(—~g)‘1/2€aﬁyéu u

8y, 8¢ (1. 16)

In the local inertial frame at a point p [where u« = 65,
& 45 (p) = diag(+ 1,— 1,— 1,— 1)] the vector w« has the
components w® = (0,—~ (1/c)W) where W = rotv,v — the
Newtonian velocity vector. Thus the differentiation be-
tween rotational and irrotational motions based on w<
agrees with that in Newtonian physics. Moreover, we
have

Theovem 3.

(Fug =0 <= (wex =0).
Therefore, this differentiation agrees with that based on
F 5, too. Consequently, we can consider F 4 to be the
angular velocity tensor. But there is a definition of the
angular velocity tensor, given by J. Ehlersi3. 14
QaB:z‘[a;B]~u[a;lplupuBJ (1.17)
With the help of the equations of motion (1. 12) it is easy
to show that
F ;= 2HQ 4, (1. 18)
s0 our definition of rotational motion agrees with that of
Ehlers.

From now on we shall deal with rotating matter only,
80 we assume
F,, =0

a

(1.19)

It means that all the three functions in (1. 14) have
linearly independent gradients. Equation (1. 12) implies
that ue¢  =wuen = 0. This,together with the equa-
tion of continuity [(— £)1/2 pue] _ = 0,allows us to de-
fine the fourth function ¢ in the following way:

(__g)l/Z pua = €aﬂ,6€,ﬂn,yc,6'

(For the details see again. 9) By contraction of (1.14)
and (1. 20) we get

(1. 20)

3(1,£,1m,8) >2

. (1. 21)
8(x0, x1, x2, x3)

g=—g2H? (
If (1. 14) and (1. 20) are assumed, then the equations of
motion and continuity are just identities.

Of course we can use the functions (, £,7, () as new
coordinates. If we do, then (1. 14), (1. 20), and (1. 21) re-
duce to

ue =H6, (1. 22)

u, = H16% + x2H1 0%, (1.23)

g = — p2H?2 (1. 24)
We also have

wo=pH164 (1. 25)
and, since u, =g ,,4%,

8oo=H?,

Loy = X2H2, (1. 26)

8oz =803=0.

The functions (7, £, 7, {) are not unique. The coordinate
transformations preserving the properties (1. 22)—-(1. 26)
are of the form:
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x0 = x0’ — S(al’, x2"),
x1 = F{xl' x27),
x2 = G(x1', x2"),

x3 = x3" + T (xt' x2),

(1. 27)

where T is completely arbitrary, while F and G must
obey the equation

Fy.G o —F 4G =1 (1. 28)
S is fixed by the equations
GF , —x2" =S (., (1.29)

GF 3:=5,..

We see that one of the functions F and G is arbitrary and
once it is fixed, the other is given by (1. 28). Therefore,
together with 7 we have two arbitrary functions in (1. 27).
Notice that all functions in (1. 27} depend only on two
variables x1 and x2,

Now the idea arises: If the whole metric tensor also
depends only on x! and x2, then the transformations
(1. 27) may allow us to simplify the metric further. So
we assume

2N, o2\, o
ox0 Bas ™ ax3 Fap = 5

This condition is covariant with the transformations
(1. 27). As a consequence of (1. 22) and (1. 25) it can be
written as

(1. 30)

8 =¢84 =0, (1. 31)

where 2, = u«(3/3x%), 9, = w>(3/0x>).

These two assumptions are sufficient to integrate the
Einstein field equations for the metric fulfilling (1. 24)
and (1. 26) to the very end. No additional simplifying
assumptions are made here. We shall explain the geo-
mefrical meaning of the assumptions (1. 31) later.
Notice that the first of (1. 31) means that «® is colinear
with a timelike Killing vector, so the expansion and
shear of the velocity field vanish.

2. FIRST INTEGRALS OF THE FIELD EQUATIONS
AND CLASSIFICATION OF THE SOLUTIONS

Since there are two arbitrary functions in (1. 27), we
can expect that it will be possible to make two more
components of the metric tensor equal to 0. It is really
the case. If we choose F,G,and T so that the equations

BBF 1 Fo —g%(F .Gy + Fp Gp) + 811G 1,6 5, =0

and @.1)

T o=—(813/833) F 1. — (£33/833)G 1. (2.2)
hold, then in the new coordinates (x9, x1', 2", x3") we
have, in addition to (1. 24) and (1. 26),

g12:g13:0 (2. 3)

The set of Egs. (1. 28)-(2. 1) makes sense no matter
what g_ 5 is. Equation (2. 2) makes sense because.
Theorem 3, (1. 19), and (1. 25) imply that g, = 0.

Substituting (2. 3) in (2. 1) and (2. 2), we get a new set
of equations which determines the transformations (1. 27)
preserving all the properties (1. 24), (1. 26), and (2. 3).
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From now on there is no arbitrary function in (1. 27).

It is time to use the field equations. If the right-hand
side of the equations

= 8nk/c?,

(2. 4)
is given by (1. 2), (1. 11), and (1. 10), then it must be
RO, =R}, = 0. These two equations when integrated
yield the result

Re = (k/e2)(Tay — 3 6%, T)+ Aoy,

o3 = (xz)k‘gg, (2. 5)
where K is an arbitrary function of one variable. Now
we can verify that the coordinate transformation

X0 = x0' + x1'x27
x2 = — xV

Xt = x27, , (2. 6)

ff

x3 = x3" — f K{x2)dx?

fulfills all Egs. (1. 28), (1. 29),(2. 1), (2. 2), and yields, in

addition,
£g4 = 0. (2.7

In the new coordinates it is easier to compute the Ricci

tensor. From the equations Ry = R2 = 0, we easily
find that

&35 =GpLH3, G =const<O. (2. 8)
We classify the solutions into three families:
Family I in which

pPa*0, p=0 (2. 9)
Family II in which p__ = 0 and consequently

H,_ =p,.=0 (2.10)
Family III in which

p=0. (2.11)

This classification is invariant. We are going to discuss
each family separately,

3. THE FIRST FAMILY OF SOLUTIONS

Using the complete set of the field equations one can
prove that by a suitable choice of coordinate system we
obtain

p=p(x?), andso H=H(x2), p=px2). (3 1)
Then the field equations reduce to the set of ordinary
differential equations, and after integration they yield

ds? = H2(dxOP + 2x2H72dx0%x! + [(x2)2 — W/G]H 2(dx1)?

+ (WpH) 1{(dx?)2 + Gp1H3(dx3)2, (3.2)
where
W= (G + k(x2)2 + Bx2 + E, B, E = const, (3.3)
HS Gx2
p=D— ex ( —— dx2), D =const< 0, 3.
o (/5 @) n (3.4)
H={Mu; +Nuy|*/3 M N = const (3.5)
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#y and u, are the linearly independent solutions of the
equation

W, —~ Gx?
U pp— W "2
3 W . w2  Gx2W G
+ __<__ 22 _'_g_~___’_%+—>u=0. (3. 6)
4 W w2 w2 w

;I;hel 11:31‘essure D is given by the formula resulting from
p=c? f pH odx2 + py,.

Whenever an inequality for a constant appears above or

below, it results from two conditions:

(1y p,p,H>O0.

(2) The signature of the metric is (+ — — —).

The absolute value in (3. 5) is needed to assure that
o> 0.

The solutions of the first family divide into six types
according as to whether W has two complex roots, two
real roots, one real root or degenerates to a polynomial
of a lower degree.

(3.7

It is clear from (3. 4) that when the sign of W is not
the same for all values of x2,then p may be positive
only in some range of values of x2. The boundaries of
this range (i.e., the roots of W) are singular points of p,
and outside of this range p would be negative. In such a
situation we have to find some exterior metric and
match it to (3. 2) so that the complete space~time has
no singularities. This is done in Sec. 7. In the formulas
given below an auxiliary constant @ 4¢f G/(G + «) is
occasionally used.

Type {
W=(GC+«k)(x2—b)(x2—¢'), ¢ =b* a>1 (3.8)
Wy =utu, ug=—i(u—u*). (3.9)
u _<x2 — b>ﬂ<x2 —~ c’)Y
c'— K b— K
x2—b
><F<a +tBty, '+ Bty 1+ B—p, = b)’ (3.10)
¢ —
K =const=K* F(.,.,.,.)the hypergeometric function.
U= 1ja—~3+ (a2 — 3a + 3)1/2] (3.11)

'y

Ay 1
= {—(a—2)b— 2¢’
e R
F [a2b2 + (b— c’)b— ¢’ — ab)]1/2}. (3.12)
Y B ,
y'é Ry e e g
+ [a2¢'2 + (b— ' )Wb~ ¢’ + ac’)[1/2} ={ g
(3.13)
Type 11
W= (G +«) (x2—~b)(x2—¢’), bandc’ real, b<c.
(3.14)

uy is given by (3. 10), u, is the standard second linearly
independent solution.15717 The formulas for a,a’, B, £,
y,v' are identical with (3. 11)~(3. 13). This time no ana~
logue of the equations y = 8* and ' = g’* holds.
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The sign of W is not constant. For x2 = b and x2 = ¢’
the solution has singularities. When a < 0, the density
of matter is positive in the region b < x2 < ¢’; when
a> 1 it is positive in the nonconnected region x2 < b
and x2 > ¢’.

Type i
W=(G+«k) (x2—-8)2, b=0, a>1l (3. 15)
u, = (x2 — b)% F(%—~qi,4~ a-—2q,, 2"” > i=1,2,
xE—b (3. 16)
F(., ., .)the confluent hypergeometric function.
.
1%:%[3—ai (a2 — 3a + 3)1/2], (3.17)
9 )

W has a constant sign,but x2 = p is a singular point of
the solution.

Type IV
W= (G + x)(x2)2, a>1. (3. 18)
u, = (2%, i=12, ¢, givenby (3.17). (3.19)

Again W has a constant sign, but x2 = 0 is a singular
point.

Type V
W = Bx? + E. (3. 20)

Here the coordinates can be chosen so that B = k. We
denote E = kE, and we get

u; = [exp(x2 + Eg)j(— x2 — EQ)% Flg, + Eg— 1,2g,

+Eq—1,—x2—E), i=1,2 (3.21)
q1 l
‘125

The density of matter is positive in the region x2 <— E,,

=3[2—Egt (BF— By + 1}/2) (3.22)

Type VI
W=E=const< 0, (3.21)
ul = F(% ’ % 3 (K/ZE)(x2)2)5 (3 22)

uy=x2F(5, 3,(k/2E)(x2)?).

4. THE SECOND FAMILY OF SOLUTIONS

Here the field equations reduce to one partial differen-
tial equation, Again it can be shown that by a suitable
choice of coordinates the metric can be made dependent
only on one variable x2, Then the solution appears to be
unique (exact to coordinate transformations):

ds? = H2(dx® + x2dx1)2 — % H2(x2)2(dx1)2

— [kpH(x2)2]1(dx2)2 — 2xp L H3{dx3)2, (4. 1)

where
p,p > 0 are arbitrary constants, (4. 2)
H=1+ {p/c2p) = const, (4. 3)

A = 3k[p— (p/c?)] is the cosmological constant.
(4. 4
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The metric (4. 1) was found for the first time by H. M.
Raval and P. C. Vaidyal® and is a generalization to the
case of constant but nonzero pressure of the well-known
solution of Godell? [if p = 0 then (4. 1) is precisely the
Goédel's metric]. It is the limiting case ¢ = 2, M = 0 of
the Type IV solution from the first family.

5. THE THIRD FAMILY OF SOLUTIONS

One sees that when p = 0 (and consequently € = pc?2),
then the equatlons of motion (1. 1) can be written in the
form (w5 — ug ,)uP = 0,and thus are the special case

=1 of Eq. (1. 12) Therefore all the formulas up to
(2 8) hold for dust if p = 0 and H = 1 is substituted
there. This time again one verifies that such coordi-
nates exist, in which p = p(x2). The solution is unique:

ds? = (dx%)2 + Zaczabcoalx‘1 + x2(x2 + 1){dx1)2

+ 0 (@x2)2 — K ex2(axd)2,  (5.1)
Kax? a
where
p=ae**, a=const > 0. (5. 2)

The metric has the proper signature in the region

x2< 0, Here necessarily A = 0. This metric was found
by K. Lanczos3 in 1924 and was the first exact solution
with rotating matter in the history of relativity. It was
rediscovered next by W. J. van Stockum?290 in 1937 and

J. P, Wright21 in 1965. In fact, Lanczos and Wright also
found the generalization of (5. 1) to the case A = 0,but
this generalization does not fulfill the second of (1. 30).

Equation (5. 1) is the limiting case E, =N =1,
M = 1 of the Type V solution from the first family (rep-~
resented in slightly different coordinates, related to
those of Type V by the transformation x0 = x0’ + x1,
x2 = x2"—1).

6. SYMMETRIES OF THE SOLUTIONS

I will not investigate the second and third family of
solutions as they have been considered by many other
authors.3-6.18-22 The symmetry group for all the
types of the first family solutions consists of the follow-
ing transformations:

x0 = x0" + ¢,

xl=xV + 4,
. (6.1)

3 — 43’
X3 =x2 + 1,

x2 = x2

with ¢y, ¢;,f5 = const.

Thus it is 3—parametric Abelian group with the Kill-
ing vectors k( iy = 04 t =0,1,3. It acts simply
transitively on the timelike hyperSurfaces x2 = const.
Such groups were classified by Bianchi into nine types. 23
(In fact, Bianchi classification is usually applied to
groups acting on spacelike hypersurfaces, but no speci-
fic signature of the metric on the hypersurface is
assumed and therefore such a classification is true for
timelike homogeneous hypersurfaces,too). Since the
group of transformations (6. 1) is Abelian, it is of
Bianchi Type I, and the hypersurfaces x2 = const are
flat. Notice that the group (6. 1) is completely charac-
terized by four statements:

{1) There exist three commuting Killing vectors

ke kb Ed# whose integral lines are the coordinate lines
() (1) (3)

(x0, x1, x3), The x0 line is timelike.
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(2) The x2 line is orthogonal to all the three (x?, x1, x3)
lines.
(3) g, koks =g, kitr =0.
Yor® Y@
4 g, kukv = 0.
) L

7. EXTERIOR SOLUTIONS

It is reasonable to look for exterior solutions having
the same symmetry group as the interior ones to which
they are to be matched. Taking Statements (1)-(4) above
as axioms, we arrive at the metric form

ds? = (adx0 + Bdxl)2 — (ydx1)2 — (5dx2)2 — (edx3)2,

(1. 1)
where o, 3,7, 6, € are functions of one variable x2. Two
cases must be considered separately: (/@) , =0 and
(B/a) 4, = C.

In the first case the metric (7. 1) is static. The only
nonflat solution of the empty space field equations (with
A = 0) is then

ds? = A (x2)2a(dx0 + Sdx1)? — A2(x2)"261)(dx1)2

— A} (x2)2a(e-1)(gx2)2 — A2(x2)2a@ ) (gx3)2, (7. 2)
where A,,...,
(7. 2) is flat.

In the second case (7. 1) is stationary, nonstatic, and
(8/) can be taken as a new coordinate x2. Then (7. 1)
becomes closely analogous to (3. 2). The solutions of
the empty space Einstein equations with the A term
divide into four types and are given by the formulas

ds? = f~2(dx0)2 + 2x2 f2dx0dxl + [(x2)2 — V] f~2(dx1)2

2 x2
exp (—— —‘7 dx2>(dx2)2

A;,S,a=const. If a=0o0r a=1,then

sf6
Vv x2
— L exp(— [ % ax2)(dx3)2 7.3
szxp(fvx)(x), (1.3)
where J2 = 0 < s are constants and
=(x2)2 + px2 + ¢, p,q = const, (7. 4)
f =(Pvy + Qu,)1/3, P, Q= const. (7. 5)

vy and v, are two linearly independent solutions of the
equation

Va2~ VUV,p— x2)v,

3 14 V2
—(_ 22 4 22 +~>v=0. (7.6)
4 14 V2 & 4

Now compare (7. 3)-(7. 6) with (3. 2)~(3. 6) and note the
similarity.

Type A

%2V, 1

V=(x2—po)x — qo),  dp =P (7.7)
(xz — po)u %2~ go\¥
v = < ) ,
2 __ "2 v’ .
vy = <x p;,)“ <9; q;) . L=L*= const.
qo— 0—
i
Iy }: Z(p —~q,) [£0— 240 £ (p5— bodo + 4d)172]. (7.9)
o~ 90
Vl: [20g — 49 F (P — boo + 43)2/2] = fu )
v Z(p ~ o) =
(7. 10)
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A = (s/3J2)PQ(PE — bodo + 98N po— L)*(gq — L)?,

(7.11)
where 2 = — qo/(pg— qq), 1= po/ (Do — qq)-
Type B
V= (x2 - po)(x2 — q,), bPoand gg real, p,< g,
(7.12)

The formulas for vy, vy, i, ', v, v’ are identical with
(7.8)~(7.10), but now pu* =y, p'* = p’. For x2 = p, and
¥2 = g, the metric has singularities, and it has the
proper signature in the nonconnected region x2 < p,
2(1'121d .\')2 > g4 The cosmological constant is given by

L 11).

Type C
V= (x2—py)2,  p, =0, (7. 13)
v = {xz_po [372
(7.14)
vy = vy eXplpo/ (52 — p))
A = (s/3J2) PQPE. (7. 15)

The signature is proper for all values of x2,but x2 = p,
is a singular point.

Type D
Vo= (x2)2, (1. 16)
v = 1x218/2, = [x2]1/2, (7.17)
A =— (s/3J23) Q@2 (7.18)

Again the signature is proper everywhere,but x% = 0 is
a singular point.

Now we have to say how these solutions are matched
to the interior ones. The solutions of Types I, III, IV,
and VI can have the exterior metric of Type A only.

For the solutions of Types II and V the exterior metric
is of Type A if the joining point x2 = 7 is at a distance
from the singular point greater than some critical value.
Ctherwise the exterior metric¢ is of Type B {or C}, but
both singularities of Type B metric (or the singular
point of Type C metric) appear outside of matter.

It is interesting that all the four types of stationary
exterior solutions can be obtained from the first family
solutions by a formal substitution x = 87k/c2 - 0.

Then Type I reduces to Type A,II reduces to B, III to
C and IV to D. For obvious reasons the Types V and VI
have no such analogs. The static metric (7. 2) was dis-
covered by E. Kasner24 in 1925, Some cylindrically
symmetric empty space solutions were considered by
T. Lewis25 in 1932. Kasner's solution (7. 2) was one of
them, but also there appeared Type A metric in the
case ) = 0. The Type C metric in the case P =0 is
contained in Lewis' class,25 but it is not given ex-
plicitly there. Finally,in the case A = 0 all the met-
rics from the present section are of the form given by
Dautcourt, Papapetrou, and Treder. 28, 27

It should be emphasized that these references are
rather accidental. The empty space metrics play only
an auxiliary role in my paper, so I did not carry out
any systematic search in the literature. In particular,

1 do not guarantee that the generalization of the station-
ary metrics to the case A = 0 is a new result. The
generalization of (7. 2) to the case A = 0 is unexpectedly
very involved, so I do not present it here.
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8. THE TYPE OF CONFORMAL CURVATURE

A special solution of Type IV from the first family is
of Petrov type IL 1t is the metric

ds2 = N-2/3 (xz)l-\/'z‘[(de)z + 2x2dx0d 1
+ 2(V2 — 1)(x2)2(dx1)2] + DN-2(x2)-5VE (42)2

+ (4DN2/3)‘1Kz(x2)‘3‘/5(dx3)2. (8. 1)
All the other first-family solutions are of Petrov type I
(general).

9. GEOMETRY OF THE SPACE-TIME

We have noticed in Sec. 6 that the hypersurfaces x2 =
const are flat. Therefore, they can be embedded into the
Minkowski space, i.e., they can be realized as some
hypersurfaces x2 = const in the Minkowski space. It
appears that this may be done only in four ways. The
surfaces x© = const, x2 = const can have the following
geometry:

(1) Euclidean plane,

(2) surface of a cylinder with x3 as the azimuthal angle
and the x1 line as the generator,

(3) surface of a cylinder with x1 as the azimuthal angle
and the x3 line as the generator, parametrized by an
observer at rest,

(4) the same surface as in (3), parametrized by an
observer rotating about the axis of symmetry.

Since the velocity field is given by (1. 22) and (1. 23), we
see that the particles of the fluid move inside the x2 = C
hypersurface and follow the x1 lines. Moreover, we

know from (1. 25) that the vorticity vector is tangent

to x3 lines, and we can compute quite easily the accelera-
tion vector &, = H1 H , 52 which is tangent to x2 lines.

This is enough to decide which case listed above is
realized in our space—times of the first family. In
cases (1) and (2) the acceleration, if present, is tangent
to x1 lines because the streamlines are straight. In
cases (3) and (4) the acceleration has the direction of
the radial line x2, just as in our metrics. We decide that
case (4) is a better model of our space—time since we
do not expect that in the presence of rotating matter an
observer at absolute rest would exist. It means that our
space~time, when realized nonrelativistically, consists
of co-axial cylinders rotating around an axis of sym-
metry with different angular velocities. All the physical
quantities are constant on the surface of a fixed cylinder,
but they vary from one cylinder to the other. The x2-
lines are geodesics orthogonal to the cylinders, x! lines
are azimuthal circles,and x3 lines are generators. Now
we see that the second of the assumptions (1. 30) meant
just homogeneity in the direction of generators. We did
not assume axial symmetry, but it resulted from the
field equations.

10. PHYSICAL PROPERTIES OF THE SOLUTIONS

The velocity field has no shear or expansion,but it has
rotation and acceleration, Rotation produces no red
shift. According to Ehlers' formulal3 the red shift is
equal to

{dr)/x =— 1,0, xe, (10. 1)
where @, = H1H ,52 ,and
6, xo= (b y,— uu,y)b6x8, (10. 2)

6x8 being the infinitesimal vector pointing from the ob-
server to the particle sending light signals to him. The
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TABLE L. Models of rotating matter.
Lanczos3 1924 Godell® 1949 Ozsvith~
van Stockum20 1937 *Wright21 1965 *Ozsvdth3

*Czsv4th30 1965
*Raval-Vaidyal8 1966
*Ellis22 1967
*Wainwright® 1970
*Ozsv4th3t 1970
Bray?2® 1972
*Krasifiski 1973

Wright21 1965
*Ellis22 1967
*Krasifiski 1973

Maitra33 1966

Raval-Vaidyal® 1966
Stewart-Ellis® 1968
Wainwrighté 1970
*Krasifiski 1973

Ellis22 1967
*Wainwright® 1970

Schiicking32 1962
01965

Ozsviath30 1965

Stewart-Ellis5 1968
*Wainwright® 1970

Wahlquist’ 1968

Wainwright? 1970

red shift given by (10. 1) is strongly anisotropic and thus
rather not realistic. However, it is not obvious that red
shift computed with respect to distant sources of light
would also have such a strong anisotropy.

It is interesting that p = p(x2) and p = p (x2), and so
we have an equation of state p = p(p) given in a para-
metric way, which resulted from the field equations. It
might be unexpected as one usually considers an equa-
tion of state to be independent of the field equations.
But if the metric tensor depends only on one variable,
the equation of state is always determined by the field
equations.

Now look at (3. 4), (3. 5), (3. 7),and (3. 8)—-(3. 13). There
are six independent arbitrary constants—D,M,N,G,b,c’
entering the equation of state p = p(p). In fact,this is a
large class of equations of state.

Cne may expect simpler results when the parameters
of the hypergeometric function in (3. 10) are such that
F(., ., ., .) degenerates to a polynomial. J. PlebariskiZ8
even suggested that then it would be possible to obtain the
equation of state in the form of the van der Waals iso-
therms.

This question has not been investigated.

In Type IV solutions if M = 0 or N = 0 then p and p
obey the polytrope type equation of state p-p~ 7 =const,
with [ba — 6 + €(a2 — 3a + 3)1/2]y = 6(a — 1), where
€ =+ 1 corresponds to N = 0 and € 1 corresponds
to M = 0. The condition ¢ > 1 implies that y <0,
1<y <jory>%i

11. A SURVEY OF MODELS OF ROTATING PERFECT
FLUID OR DUST

This survey is made in the form of a table. Each
“cell” of the table represents one solution obtained by
different authors. A star preceding author's name
means that he knew his predecessors and did not expect
to be the first inventor of the solution. There is no star
at Bray's name in the “Gédel’'s cell” because his solu-
tions, when the electromagnetic field is absent, reduce
precisely to the metric of Godel, but this fact was not
indicated in Bray's paper. 29

For each of the solutions the coordinates (7, &,7,%)
from (1. 14), (1. 20), and (1. 21) can be introduced, but
this might be a subject of another paper.

No approximate solutions are taken into account.

A large expansion of this article is currently sub-
mitted to Acta Physica Polonica.
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