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ABSTRACT

The article reviews models of rotating matter
congidered by other authors. The papers using appro Ximate
methods are only listed, while all the exact solutions
of the field equations with rotating perfect fluid or
dust as a source, published up to the end of 1973, are
critically reviewed., It is shown, which of them are specigl
casea of the solutions found in part 1 of the article.
and which are not. In the second case the dirterence is
explained. Each time when the data of the paper made it
possible, the solutiqps were transformed to the “canonical
coordinate system" used in part 1., A table exhibiting all
the discoveries and rediscoveries of solutions under

consideration is annexed. 60 refs.

~ INTRODUCTION

The present article constitutes the third part of
a series of papers {[1] , [2] on solutions of the Einstein
field equations for.a rotating perfect fluid. It will be
referred to as chapter 14 of the whole work. There are no
new results in it. I give here a review of solutions
obtained by other authors. The references dealing with
the approximate solutions ars merely.listed. 4 critical
review of exact models of rotating perfect fluid or dust
is gifen. This "neglectfulness™ of approximate solutions

needs Justification.
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Approximate methods may be qpite'useful when some
effects in the gravitational field of a rotating body are
concerned, as e.g. the shape of its surface, the non=flat
deflection of a iight-ray in the exterior field, the
dragging of inertial frames, and so on. However, if one
intended to use approximate solutions to investigate such
properties as geodesis complsteness, singularities or -
equation of state, then he might be Jead to completely wrong
conclusions. As an example, let us take the two-dimensional

Riemannian metric:

as® = (1 + ¢ “’xz) T (ae? - ax?)

One can hardly imagine a more regular-apace. It is
infinite, geodesically completé, nonsingular, and has the
signature (+ -) for all values of x. Now take the first
approximation in w . Then it turns out that at x = =+ (2/ w>1/2
& singularity appears, which is at the same time a bound ary
of the space and no line can cross it. Take the second
approximation in @ . The singularity disappears, but the
line of the x = coordinate, wh;ch is still a geodesic, has
again a finite length. If we take higher approximations,
then the singularity appears in every odd step, but the
X - line is always finite. Now, if one'had only the
approximate results at his dispossl, would he recognize how
regular:¥he exact metric is?

There are still more objections against the method

of slow rotation which is the most frcqgently used
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approximate method. In new‘onian physics the definition. of
angular velocity is based on the notiom of a radius~vector.
This notion makes no genss in a general curved space, SO
the anguler velocity is defined only for infinitesimally
close points. The relative angular velocity of distant
points ié clearly not an invariant notion, and morsover
it is by no means obvious that the linear connection batween
the linear velocify Vv and anguiar velocity w should hold |
in general relativiiy. Most of authors do not care for these
aifriculties. |

Since we are interested in geometrical propertiss of
space=time, we shall not include the approximate solutions
into our investigation. The list of references concerning
approximate solutions [3] - [30] 1s giveri for completeness.
The methods of numerical integration of the Einstein field
equations for rotating matter, developed recently by
M.P. Ryan jr. [31] and J.Pachmer [321, [331 deserve a
speclial care, but they alsolire outside the scope of our
formalism. | |

For clarity of the paper it is necessary to summarige
briefly the starting point and some of the results of part 1 Ul
We dealt with isentropic perfect fluid obeylng the equ-
ation of continuity, or dust. Under the assumption of
nonzero rotation the equations of motion 7®ia = 0 ime

plied the existence of such coordinates, in which:

%o; - E° | | /14.1/

2 =2 , |
Goi = X B | ‘ /1442/
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Qo0 ®
2 2

qor = L ET . e

B2 J1441/



%02 '- %’03‘0 /1403/
g= dak .ﬁ%we,!l‘ - -5"2 n~2 AT

where ¢ = S(?) is the density of the rest-mass, and:

X |
H%E H, + %}j —%&) = (e +p)/3c? | 14,5/
_ o

The functior H is the enthalpy per unit rest-energy,

€ is the energy = density and Ho = conste In the case of dust
p=0Oand E= 1. |

Moreover, we cbtained:
&
u*=Ha% | /14.6/

for the velocity f£ield, ard:
“_ o H15% - | /14.7/
w =39 3 '

for the vorticity field. Next, we have assumed that

o) ‘

éjogo Gip = o %"‘G =0 /14.8/
what implies aw % oA _—.‘féw% <3 =0 « The solutions of
the field equations were then determined without any
additiorel assumptions, what zﬁeans that the properties .
/14.8/ lead uniquely to ou:f solutions. They divide into
three families, first of which contains new metrics, while
the other two were known before, and we shall need them

. hereg Iiie segond :tamﬂ,v solutions are:

ds? =HH(dxof +2x2 dx® dx! + 30 @x2] +

/14.9/
~[regHOA™ (dx)? - 210 " H3 (®)?

where:



Ha 1+ p/czs | | /14410/
A= %n(g~ ?/c") 401/
g = const > O, p = const = 0, %= 8WK/E,

The third family solution is: ‘
ds? = (4 #2 x*dCdx? + x2 02+ D (P +

- ~4 /1 4.12/
traxd) e X (A —nd e (AP
where:
-X* .
g=a2 /14.13/

a = const > O, A =p= O.

In the survey of exact sclutions I make it my aim
to do two things:

1. To show which solutions kmown up to now are special cases
of ours, which are not, and what the difference is then.
2. ‘1‘6 prove that for all these solutions our coordinates

from part 1, in which the equations /1441/ to /14.4/ are
fulfilled, do exist.

The second odject was not always possible to secure,
as not all the authors gave enﬁugh information to construct
the metric tensor and all the important scalars explicitly.

I was interested only in models of a pure perfect
fluid for dust/, without ény electromagnetic fields, viscosity,
heat conduction or anisotropy in pressure, because our

congiderations from part 1 cannot include such general

situations.
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In the following sections I will not explain, how to
look for a transformation to the coordinates of /1441/ -
/14.4/. I give now the 'generalridea of this procedure to
make it clear to the reader /the example in section 4 could
be helpful/. Pirst, we pick such coordinate x° that uf‘;HS“é
/if p=0 , then H = 1 and this is just a comoving reference
frame/. Then automatically 806 = B2, Next, we specialize
the other three éoordinates in such = way; that only one
of the Qetric components Gots 801;, %03 is different
from gero, and we pick out x! so that just %N#O. Then
we compute Hzo%o,, and choose the obtained function as the
x°-coordinate. Finally, we specialize x> so that w“:SH“'Sg
what is equivalent to g4 =~ S"Z H™Z ., The theerems and
formulas of chapter 1 from part 1 ensure that this procedure
can be carried out. We recall /see chapter 1e/ that once these-
coordinates are introduced, the properties /14.8/ are invarian;t.

The survey is based on the bibliography list from
Synge’s book [34] until 1925, and on thé annals of "Physics

Abstracts" for later papers.

1. LANCZOS® SOLUTION [35]

In the general case, with non=vanishing cosmological
constant, this solution is of the Iczma) :

ds?=dt*- 2Cuddt +[CHu2-w)- N (A- Y] a2 +

- f:' e “[CPu+ N4~ e.'“’)]-‘d,u;l —e d%z. /14.14/

() ¥We bave changed from the signature /+++=/, used by the
author, to /+===/,

-~



where C is an ardiirary constant, A is the cosmologlcal

constant, and:
= + 2o :
g=2r+iCte 114215/

. | . %&
is the density of matter. We have p = 0, w = 0, 3
N=2Ce*8% , (<3 = (Bygyus ).

Since for dust H = 1, the conditions /14.1/ and /14.6/ are
fulfillede To fulfil /14.2/+ /14.4/ and /14.7/ the following

transformation is needed:
P = cx!
w == X%

g = CINE +202]7 g3

/14416/

Then /14.14/ changes to:
st = (00 + 20 do®dct + LrGea )~ ANC2(A- @) [ (dx D+

4 eX’ nec2e P (xD* X
R * <2 1441
[.H NA-e) -2y {next+ 2 CR) ](fﬂ +  4ar

?\Cz e'z.xlxs Cl axl 2
+ dxtdx® — 3
ZC'}\ FeacDs O T TRy 20%)* (dx)

New we see why this ﬁxetric could not appear among our
sclutions when AN+0; it dépends then on x° » 80 the second
of /14.8/ does not hold. However, when /7\“-'-0 the metric
/14417/ is identical with our third family solution /14.12/=
/14.13/, if only 402 = a./We should rsmember that Lanczos

. used such system of units in which R = 1/.

The metric /14.14/ was very nicely discussed in [35], so

that only a few gquestions /not to be answered at that time/



were left open., Por the reasons which I do not understand,
the paper of Iénczos fell into a compiete_ oblivion, so
that his solution has besn at least twice rediscovered

| /see sections 2 and 5/ until S.C. Maitra /see section 7/

recalled it to the physical commmity in 1966.

2. VAN STOCKUM’S SOLUTION [36]

He gave the following metr:i.c@):
ost=ct dt? = 2coaxtdbdy + /14.18/
—cr2(d-atcDdet- e (et +d.z9)
This solution is not merely identical with that of Lanczos
[351 /in the case A= 0/, but even represenied in the
same coordinate .system which Lanczos used in the first
part of his paper. The metric /14.18/ reduces to /14.12/

after the following transformation:
[

ct=x

¢ =axi /14.19/
-~ A12

1 =cu1 ‘Xl) '

The %"a" above should be identified with 31/2 from /14.12/.
Here again . = 1. |
Van Stockum did not quote 'Lanczos, although he quoted

quite a few times the paper of Lewis [37) where the

reference to Lanczos was given.



The so called “goneral van Stockum’s solution [36] ® depends
on oms function which is to ‘be determined from & partial

differential equation.' We shall not consider it hers.

3. GBDEL’S SOIUTION [36)

In [ 38] this solution is given in the form:

422 X2 - dxB+ A P 2 —dod +2ed o dxy ) /14.20/

where the velocity field, the density of matter and the
cosmological constant are:

«
u.“ =Q. 3 o}

g='($m")'4 =const /14.21/
?\ = - (2.0,2)-4' = - le’ks

G8del used the system of units in whish ¢ = 1. The second

formula of /14.21/ can be thus rewritten as:

-1 ' "
a b ™ wogmie Nl

N

Now we execu. te the following coordinats transformation:

i

-
Xo=00 x°

Xy = W x>

-4 A
X, =& X

/14.23/

X3 = \(?t')%xs
We find that the resulting metric is /14.9/+/14.11/ with
p= 0 and A,":“ ')\ .
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G8del’s solution [14.26/~/14.211 was not tﬁe first
zodel of rotating matter, slthough the suthor claimed so.
However, his statement has been repeated uncritically
for the next 17 years, mﬁl S.C. Maitra ,reminded Lenczos
and van Stockum. Ocasionally it happens until today that
some p;;ople refer to G8del as the first author of a model

. of rotating Universe.

‘4. FARLIKAR'S MBTRIC [39]

The author gives no new solutions, but proposes a
general metrié which would describé the rotating Universe
filled with dust. We show that this metric may be put in
the form /14.1/ « /14.4/.

It is assumed that matter rotates around an axis
with vorticity v;ctor parallel to that axi#. Therefore
every particle moves on the surface of a cylinder, but
the axial symmetry of motion is not assumed. The author
demands further that the section of the cylinder with
a surface orthogonal to the generator is a two=-dimensional
space of constant curvature. These assumptione imply the

following foxrm for the metric:
d.s* = dﬂ;’- + 28 (A-k fz)’f’ldf dt + )_,%fr de dt +

2B UA-keD) M de 1o 2d] — ) dz?

/14.24/

where a and s are functions of t; £ and g are funoctions

of » and ((' o The constant k = o, : 1 is the curvature of



the cylinder’s cross-section. The verticity vector has the
direction of ths z-axis. |

Sinee uw® =%% , the condition /14.6/ is fulfilled.
But the comﬁng reference frame id defined exaot to the
transformations:

X0 = x®  FOxY, X x¥)
L __FL(. LY. 3:) ,:“72. 3
A = X y X ’X ' b v )~

where Fo, Fi are arbitrary functions of three variables.

Therefore we will not destrey /14.6/ if we execute the

transformation:

t=7- 3("3‘?) /14.25/
where:

’3(,(-)(?)"%;(4-\(«-2, '“2'.%(4-3_,.?)0“(- /14.26/

The metric /14.24/ changes now to:

dst = aLtl.;z(%«-—%;é)dfc@_ z'ﬁ&)ﬁd‘? ac+  /14.27/
11.2 9_3,_ 2. 2 L _ (, % 2 bR
e (& Lyrag —ait agr- £128 g o 294z
If /14.24/ is not static /what is assumed/, then the
follawing transformation is nomsingular:

X‘)' =-%"\‘“ '—(%—?P'
x*ch

ifter /14.28/ is done, the metric /14.27/ obeys [14.1/ ¢

/14.28/

/14.3/ and f14.6/, so that only /14.4/ and /14.T/ remain.
In the comoving frame the equation of continuity
assumes the form CV-—& S>7°= 0 » hences
-1
%: - S F(xq))é’-,z) /14.29/



sheye F is an arbitrary function of thres variables. But all
the cozponents of /14.27/ are independent of z, B0 in our
cace F = F (x’, 12) « This enables us to execute the last

transformwation:

Z = —“WF(X\"})(?-) = ——v:z:g -g

9

which does not destrgey the previously assured conditions.

Now all the equations /14.1/ + /14.4/, /14.6/ end /14.7/
are fulfilled.

‘5. WRIGHT’S BOLUTION [40]

The euthor obtained the G8del’s metric[38] and the
lanczos?® metric [35} . Not knowing about Lanczos and van
Stockum however, he sscrided himself th; prioxity in
discovering this unlucky metric. SeCe Haitra /sse section T/
and GeFcRe Ellis /see ssction 10/ already recognized thois
facte. Therefore we only show how to transform Wright's
coordinates into Lanczod coordinates. |
JeP. Wright represented his metric in tﬂ; form(Z):
st = (dxO - 4 9" e 4 (p+ %Az%z - 7\52%1)-4 d\éz +
+2(i%g2+c> dxCdx? +
T2 g e ey ™
- M (aud? |
The density of matter is equal tos

] = (R + 2 /14.32/

@) There is®misprint in the paper [40\. Inside. the last term

in square bracksts there should be & double b A
but the lower is not printed. Bisn ofore g »



We notice first that the coordinate transformation x° =
/ ‘ .

=x?" - c:z ylields the same result as if C = O, 80 with

no lass in generality we can assume C = O, Next, we see

that the reflection xz — - 12 changes + before %

to -?, so the double sign is not significant, and we shall deal
' ' . !
with + only. Finally, the transformation x2 = B 12 yields

B=1, 80 we assume B = 1.,

Now: we perform the tranéfomatiom :

€ o
x°=x% ~ -ZAE %
y=11(x 4{)]*& . /14433/

&= ettt

]
X3 = e,?—_‘c"x"’
where E is & solution of:

(D+-’,'—1-A"E)e,:=}\ | /14.34/

Such E exists if only A\ 3> 0, what must be the case for

F4
otherwise S would not be positive in some region of 12 .

1
If we identify then —’2- A62° with C, we obtain /14.14/ where

(x s 11,9 12' 21) = Cty q{; y W, y)‘

6. THE SOLUTIONS OF ozsvima anp scwockive [41], [42] amp
ozsvATH [43] |

The “finite rotating Universe® discussed in [41] and
[42) is a special case of the solutions presented in [43} 8o

we shall not discuss it separately.



‘The suthor obtained six different solutions, all describing
dust. We investigate only the firs one in detai]-._. It is of
the rom. ' |

dst = 2L(1-vd) e - Ehor? (dxo¥ +2.('\’V0V1)e oLx°oLx +

4 (’l—»’“‘) -D\VG( ob«")l ~25,x% ( d)&")z’ ( ob(3)11 / 14.35/

1
2
B =[1+252(4- D (3~
Nl _A s~

=z |
N = A-st /14.36/

-
_NT N .

The velocity field and the density of matter are:
~Ay —2hXDd =hyx3 '
Uy = @y (e, A 5 & ! )O;O> /14.37/

g = 3" (2-s)( 15 -1) =const 1438

2

where a and 8 are constants, < 8 < 2, and:

Since Wy has a nonzero shear tensor, we see at once that
/14.35/ is nat contained in our solutions.
- The vorticity field is tangent to the xz-line. We start with

the transformation:

x° 'woxo'
A A! 1 0t
X °“’j tuwX /14.39/
K2 = %3
]
—-9~4 n x%

)4 SO W =—-0=Vo(\’4’\’0) e‘éﬁ e

where u. =M (\k’\’o
are the contravariant components of the wvelocity field
/14.37/. Then /14.35/ changes to:
ds2 = (dxoV> + 252 dx9dxt & (1-vj )cxl') (alx"')"+
Z.'L'_é__ o! d. 40\)«’" '*’0'2‘52(4 ""5"):' LXOO (d)&'>+ /14.40/
T 240295 (x¥)
- —L(xzonzllkd (&xy’ 2




Yow /14.1/ ¢ /14.3/ and /14.6/ are fulfilled. In oxder to
fulfil /14.4/ and /14.7/ the determinant of /14.40/ should
ve equal to (- g—?‘). while actually it is:
227/ /14.41/
P 202y
% olsr(3-sD*
Therefore we perform another transformation:

Y= [¢\g /14.42/

where ¢ and a' are given by /14.38/ and /14.41/ respectively.

Atter the transformation we obtains
dis? = (doe'¥ + 2 X)" dolaxt + (4~ Yal ) Cx”)" (ax"Y+

1 21— w2 g $H(3- DG (L +
T&Z'Ti[ L (1= 2228 bt (2- (25 4)LJ(‘L I

Aost o 2 _ st (3eD" ><3 dx¥d S+ /14443/
toyTa CapT axid + oA (2.-5‘)"(15” 4)2#'

wist(3—sD* I

o3 (2~ (254

This metric obeys all the conditions /14.1/°¢ /14.4/, [14.8/

and /14.7/, but fulfils none of the assumptions /14.8/. This
is why it could not appsar among cur solutions.

In the speoial.case s = 1we have A\q= 1, o= 0, and
/14.43/ reduces to the G8del’s solution, i.ee /14.9/ e /14.11/
with p = O /see section 3/.

Proceeding the same way as-&bove, we can introduce the
coordinates of /14.1/ + /14.4/ for four of the other five
solutions from [43] s« The "finite rotating Universe® is a
special case of them. In all the four cases it turns out
that after the metric is put in the form /14.1/ ¢ /14.4/,
its components depend both on x° and 13 s 850 they do not

fulfil /14.8/, and could not appear among our solutions.



Sowever, for the metric /6.14/ from [431 this pﬁcedme
fails. This solution coﬁtaina a hidden mistake. The tetrad
e®Jj, given by /6.13/ in [43], fulfils D‘Ccua [+1,-14,~1, -] =
=€én§ue,.bb » dut the welocity vector ‘uj - eoj does not obey
the equations of motion. It turms out that (‘LLL,&ﬂL,j)L)w =
=7;:[(‘02+ 'D/ (EL"'O]Z ) % although it should be (u.% ~u:\’;,)d}=c.
To point out clearly where the mistake was made, one should

go desp into the material of [43], so I will not do it here.

7. MAITRA’S SOLUTION [44] .

This solution is different from ours because it has
nonzero shear itensor. It has the form:
dst =t - e ¥ (d e 2 4d2) - (£ 2 —ad) dip™ — 2w dep A /%4 .44/
where: ' :
= (V) 4 g (V)
= %Q,EW-—'?' M%CW—Q—’D]
= %Oux y @ =const
The pressure p = 0, while the velocity field and the demsity

/14.45/

of matter are given by:
+
<t = A w
Vo= VA=
. ]

v ¥

_— e il — e
= =i /14.46/

- Yo VAT xE~A1
3 e IV =

where m W % . We perform the transfommation to

the como¥ing frame of reference:
t=vte®

Q = )(4‘("\/?)(.0

/14.47/



The resulting metric is:

ds* =(dx° +Z<¢:‘:>rd\,x°okx — (2 m&)(d,x" +

3/ /14.48/
Q_\f_'x (fw) (&"—ww)d,\‘d,f"(*

¢
- P TN Tyt — 2 dz”
L -“”m]

The equations /14.1/, /14.3/ and /14.6/ are now fulfilled.

To secure /14.2/ we perform the next transformation; which

changes r to a function xz(r):

(;rm\, ML)C'(" \4“" = x% ' /14.49/

Although the metric depends on x°, its determinant g does
not. Therefore, without destroying the condition /14.3/,
we can perform the third transformation:

2= x¥/ N=g /14.50/
After /14.50/ is done, the Maitra’s solution abeys all the
condi‘f:ions /14.%/ ¢ /14.4/.

It depends then both on»x0 and x3§ so it does not fulfil

/14.8/, and that is why it could not appear in our third
fani 1}7 .

8. THE SOLUTION OF RAVAL AND VAIDYA [45 |

The authors looked for generalizations of the G8del
solution to the case of non-perfect flunid, in the sense
that the distribution of pressure was anisotropic. The

principal values of pressure in the direction of vortex



13 in the orthogonal directions were different. Thers
is only one special case when the pressure is isctropic,

end only this one may be compared with our solutions':
4 .4 . A A .
det= AL (dxd 2" dxPdxt + —}:QZX (dxD* +
’ [14.51/
— (AW = (dxDF + 2VBIA-8) dx®dx ]

where A, B = const, 0 < B L -%, and: '

_sw S - S

If B = o and aap/c;’- is identified with C- ’>~)

then /14.51/ becomes identical with G8del’s solution
/14.20/ (Hote: if %P/c" is identified with -N
then S should be interpreted as (g-\-'}\/%)) .

¥e show that when B $ O the metric /14.51/ is identical
with /14.9/ + /14.11/, i.e. our second family. First, we
reinterpret the constants W¢ and %P/cf' : we write
(%S—-A) instead of RY 5 and (%PICL+A> instedd
of 2P [+ « It is easy to see that this may always
be done, as the field equations do not differentiate these

situations. Thens

A,=-4£3Q,(S-‘>/c.1> ' - /14.53/
in agreement with /14.11/, end:

1-B A 14.54
A—28 2Ar = ji"”“CS"'% ‘-”’SH 1454/

Now we perfoxrm the coordinate transformation:
X = (AH)“ o + [ B/(4-8Y] "l

= bux? | 5 S
xZ = (AHY "% + 2L e/t~ 1 /x 11455/
x3= nHEL 2 (A-28)/(4-B)]"> x¥



As a result, we ottain the metric /14.9/.

9. THE PAPER OF TRUMPER [46] AND OTHERS RELATED

There are no new solutions in the paper of Trfimper,
but it is _closely related to our work. The author considered
a rotating perfeot fluid which is stationary and axially
symmetric, with the velocity vector coline‘ar to the timelike
Killing vector. From these properfies he deduced the
following fowm of the ﬁetﬁo:

4.9 = e (db+Adg)~ CPLF g+ (de2 +d 2D 14,56/
whers Cb)cq)f)z) are gylindrical coordinates, and U,A,
Pok are functions of r and z only. The author wrote down the
field equations for /14.56/, but did not try to integrats
them. He proved that if P)a{-#O , then the density of
matter is either constant or the function of pressure p.

We see that if somebedy integrated the equations
written by Trfimper, he would obtain a generalization of
our first family solutions. If the functions U,A,F,k were
assumed to be independent of z, then the solutions would
reduce to the metrics given in chapter 5 from [1] s trans-
formed to another coordinate system. It is easy to see,
that the metrics /5.12/ from [1] are ¢f the form /14.56/:
if & new coordinate »r is introduced by (WsH)‘)‘(%B)Z:Gg'H&

then o2V = H2(x2() J) A(“')le(t)) FO=W[6 Hq‘ xt=xX<) 7
CZKC’?) 3-63-4 Hs‘xlleéa .



There are othgr papers whose authors have written
down the field equations for a rotating perfect fluid,
but confined themselves only to meore ar les§ penetrating
discussiong or had Just otker purpose than integration of
the field equaticng. These papers can be found in the

bibliogrephy list under the numbers [47] # [50] -

10, ELLIS® SOLUTIONS [51)

Some of the solutions comsidered in [517] describe
a nonrotating portion of matier. Hexre we discuss only those
with rotation. According to the author’s classification
these ére: cagse I, and the classes 4,B,C of shear-fres
solutions. All of them describe dust.

Cese I is divided into the subcases Ia/ and Ib/. The
subcase Ia/ is the G8del’s solution [38] , discussed in

section 3. In the subcase Ib/ the solution is(n :

dst = (daV = (Dt — YD LD +8 (D @3] +
—yrCDL2dx —ygxDdxtldx® /14.57/

where t and y are defined by differential equations with
initial conditions:

(i}t — —_ T = -d‘;b =
m);_ +“K't =0 ) K-fCO'nsS'C’-t(O) /‘) d.xl(O) O
-(i%-v :—Zc‘t<x2-) 5 C,=c_on5t) ua(O}::O /14.58/

x>

The function Y <x1> is defined as follows:



-2t -
[ A+2cex’ when A=0 =X

KATIVEFR + KX = 2] when A=04K
(22 ' [VREFHR sim (NEX) +K]
when A>O0

$ VRS (VX p A+ 2/A]
when A <O

Y=

/14.59/

The metric /14.57/ fulfils the conditions /14.1/ and /14.6/
because its reference system is comoving. To fulfil /14.2/

and /14.3/ we perform the transformations

X =& = 11 /14.60/

y(::f".)- 12]

¥e denote x° = u,[zas the function reciprocal to

/
%% = v (12> » 2nd £ind from /14.59/:

dst= (#XD)Z*l'Zxﬂdx dx'+ L 6= \(Z(xg)‘tl(u.&z))](d.x"' a
(b2t YA (Y- (42 114461/

If y = const, then the transformation /14.60/ is singular,
but then the matter does not rotate, and we need not take
this case into account.

The density of matter /see "_51] / depends only omn
'
x> . The determinant of /14.61/ is equal to:

% = -Y" ny.)/qc /14.62/
Thus we perform the transformation:

/14.63/

= )™ g@')YZng) dx¥



which secures /14.4/ without destroying /14.1/ ¢ /14.3/.
Since the vorticity vector is tangent .to 5:3 = lines, we
see that the second of /14.8/ is broken, and this metric
does not belong to our third family. - |
Now we pass on to shear = free solutions. The claﬁa 4 gon-
tains oca.e I considered above, and a new solution which is
not explicitly given in [ 51], so we will not try to put
it in the form /14.1/ + /14.4/. In this solution the
derivative of the density of matter in the direction of
vortex is different from zero, 80 the second of /14.8/ is
certainly broken.

The class B contains the solutions of Lemczos [35]
and G8del [38] discussed previously.

The class C divides into the subelasses Ci, Cii,
Ciii. The subclass Ci is identical with the class A.
In the class Cii the solutions are not éxplioitly given,
bt they are seen to be different from ours because the
scalar of rotation W = %(——%@de‘wﬁ) e has nonzero |
derivative in the direction of vortex, and /14.8/ is broken.

The metric of the cléss Ciii is given by (1) H
dst =(dxO)" ~ AL OB (dx) ~ A=) (dx ) +
U2 dCdx® + 2 exX B dxPdix® &

{107 B2 T + 2 BRG] (4o

-~

/14.64/

where ¢ = const while 4 and B are defined by some differential
oqti,ations. Proceeding exactly the same way, as in the case
of /14.57/ we can put /14.64/ in the form /14.1/ + /14.4/,

but then the second of /14,8/ appears to be broken.



In the coordinate system of /14.64/ the vertisity
vector is tangent to the x =lines.
Therefore one might expect that /14.64/ talgils /14.8/
when ¢ = 0, We prove that 1t is not soc. lLet us perform
the transformation ':1 = xBl, 12 = % le . x3 = 11" e Then
/14.64/ with ¢ = O becomes:
do® = (du®)™ + 2x de®dx s (2= RGN (XY 4

- %I‘AL()L'“)(&)&?")?',— AZC(4’)%ZG(4')(d.Kg)L /1 4.65/

This metric obeys /14.1/ ¢ /14.3/, but not /14.4/. To maks

it obey /14.4/ we must perform the next transformation:

(3 = 92X / gC&”) ALGAYBE(x ) /14.66/

where S(:K"') is the density of matter /see [51] /.

This transformation does not introduce x~ into /14.65/ cni;-,v
when SA?' Bz = const. We know from ES‘I] that this is
true for the metrics of Lanczos |35) and G8del [38] enly.

Consequently, none of the Ellis’ solutions belong to any of
our families in[1].

11. THE SOLUTION OF STEWART AND ELLIS [ 521

The authors considered the Bimstein field equations
for a fluid with nonzero anisotropic pressure, nonszero
viscosity, electrically charged and moving in an electro-
magnetic field. We pick out only those special cases, in

which the pressure is isotropic, the viscosity, eletric



charge and electromagnetic field vanish, while the vorticity
is different from zero.‘Tﬁey are cbntained in case I
according o authors’® classification. It is divided into

thé classes la, Ib, Ic and'Idf In the class la, when the
electromagnetic field vanishes, the solution describes

ma&ter with constent density and constant pressure, and

is identical with the solution of Raval and Veidya /14451/
/though the authors do not give this referenée/. The solution
of class Ic does not exist without the electromagnetic field.
In the class Id no soldtion is given éxplicitly, and therefore
. we are not able to diséuss it.

The ihrormatian given about the class Ib is too little
to discuss the conditions /14.1/ + /14.4/. Bowsvsr, an
argument showing that ouf first family does not belong %o
them, may be given. In all the solutions from [52] only one
direction orthogonal to the velocity field u* may be
disiinguishéd. Thus_the’vectors of vorticity and acceleration,
if both nonzero, must be colinear, and #onsequéntly
%d(bwok&l(é = 30 wi | 1467/

\iz

where E{(x) *+0 is a scalar function, wek %_(-w,iw ’

L i - » 4

Uuﬁi.é’uud}bx)[%

However, the formulas /14.7/ and /12.2/ from 2 imply ﬁhat
in our ocase:

G Wit =0 - /14.68/

The formulas /14.67/ and /14.68/ are consistent when

W = 0, whkech is exclludeci by assumption, or Cb = 0, what

x : ‘ .
means W = 0. Fe know from [21 that uf'L =0 means
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H = const, see chapter 12. Thereforas /14.67/ holds only
for the second and third family solutions.

12. WAHLQUIST’S soLuTIOr { 53]

The author fqund a vexy complicated solution which
desoribes, in a special case, a spatially vlimited portion
ot‘ a rbtating perfect fluid. We shall confine ourwselves
to this special case only.

- The formulas for the velocity field, vorticity vector
and density of métter are not given in [53]. The metric is
too complicated to compute these quamtities off-hand, and
therefore we shall not introduce the coordinates of /1441/
+ /14.4/. We Just give the argument that #ahlquist’s solution
is different from our first family solutions.

In our first family the relation /14.68/ holda. The

same relation for Wahlguist’s solution implies oj,‘.(g,j) ca (5,3\43,
where the functions 8 and gi are:

. -~ kX : /14 .6
gerig Lot (B)- L 1o

=8
- KA
S ( »vo)
with k, T, ™ conste The complex variable ‘A is defined in

terms of E and 3 in the following way:

kX _ ar aim (k3) + Lo sh (kg) /14.70/
™

It can be shown that each of the egquaticns g, = 0 and
gi-Oimpliesk-O. Sog .gi-o:l.mpliesgr' gisO.
¥e lmow from [ 53] that then the vorticity vector vanishes.

Consequently, Wahlquist’s solution does not fulfil /14.68/
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with w0, and certainly is @ifferent from our solutions.

13. WAINWRIGHT®S SOLUTIONS [ 541

. The author ssarched for such solutions of the Einstein
field equations, whose Weyl tensor is algebraically spécial,
the repeated pringipal null congruence being geodesic and
shearfree. Thus only /14.9/, and the special metric discussed
in chapter 10 of‘:aj s might belong to this class because
all}the other our metrics are of Petrov type I.

The solution {1449/, i.e. that of Raval and Vaidya [45],
does really belong to these solutions /the author, however,:
identifies it with the G8del salution 138] /, while the other
does not: its repeated principal null congruence has nonzero
shear.

Only one new solution is explicitly given in [ 54]

2 3 2,
dst = — 7_‘—(—)(—453' (dxA m (dx2 y* — —5&:\?)'2 dxtdx®+
- _Q%—“ dxtdxt + 24 dxt — x1(dd)* /14.1/

where the pressure p, the energy —density A, the density of

_ &
matter . S and the velocity field w are given by:
1

P=x
A= 11 R _
g = (2/p)Vx? /14.72/

A \TACK £
W= NP3 + (’1Nx1)gq
D is an arbitrary constant and ¢ is the velocity of light.

Hence, as A + p = Sozﬁ, we have:
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H= D Vx! - /14,73¢

We shall put /14471/ in the form /14¢1/ ¢ /14 kf by the
fonozins transformation:

RV
2 ez /n
= x° /5 +/2 118,14/
- (2/3I¥) x°‘xaf-f %e Dz(xa') =
The metrio /14.71/ ehanaes t01

”' Z" (d.x°')7'+ z;(‘ 't __(ﬁfl. (dx)* +

o‘ ¥ X 4
%’;—l* LDVF&“']X%X’!&K‘——— "D(x"‘)wzd;z&* i+

~[4 _ 23;; _clbz\[‘z? 3)?-] c!.x:: +

8 s f2x°80 o 2, g P Y (AR
5 e DAY (2 ~ D VR ) - 2D (Y
The oonditions /14.1/ ¢ /14.4/ are fulfilled. This metric

$14.,75/

could not appear in our paper bescause it does not fulfil

both assumptions /14.8/.

14 NEW SOLUTIONS OF ozsvAH [55)

In this paper the author deals with the solutions of
the Binstein field equations for dust, belonging to classes
II and III according to the terminology of Farmsworth and
Kerr [561 o They are different from ours because they
d?pend on the time coordinate in the comoving frame of
r?terence, and thus do not fulfil the first of /14.8/.

We put both solutions in the form /14.1/ = /14.4/.



The class II solution is given by:

_ T R™ 2 (4=28\!
ds? (d..xO) + 2dx [ Tk z+e4)111°b(2+‘\(f . d‘xﬂ"r

/14.76/
+ -‘»vs[( At keon X))+ 2k gim 220 dx 0k +

+ (k-0 1x0)e 2 (dxi)l*rl\/TT” T ot~ (D]
where R, k » const, R 7> O,-z- <{k] é-—- » and the

\2'

density of matter is:

g=tr Bsb st f1a.m/
x» -

Note: in [55] there is probably a misprint. The term

2y 1=2 k2 e - dxz dx3 is written there with the sign
"minus®, There are many reasons to get cdﬁvinced that it
should have the sign "plus®, as in /14.76/.

The wetric /14.76/ is represented in the coamoving frame, so
/14.1/ and /14;6/ are fulfilled. To fulfil /14.2/ and /14.3/

we perform the transformation:

e a'_ A=2K% 4113

=X Lke-4 |

3 = Ln,x?'—' A /14.78/
_ (A1 A

=

The result is /watch carefully the difference betwesn %% and

x° because both are present/:
et =(0 +2 ! + 2 AT (e a2 )+

&Qﬂ‘_ﬂ_ 0,4 _g_ (cu.) 114,79/
+ INTK A 2 X d)\d)( + ( 1—+k(052;® ()gﬂ)l

_g—_ ‘-—-t.L ___Zk_z__ 2.' 4' 3___________,_—. 3 1
AN -Tomy p R S TR ()

The determinant of /14.79/ is equal to g’ = —P\“(/r-k?-)/f\@:
= gonst, so in order to fulfil /14.4/ it is enough to

transform 13 by a constant factore.



Now we consider the class III solution:

dst =2 (ng) M [ (A +2eX dx’dn +
- 4 (Aesoon 2) (dud)* - 5 g, 21 Xt +
4 X (rs o ) (Axd — (dx®) |

whexre S a const is the density of matter, and Isl<4 )s=0>ns‘t-

/14.80/

in the spéc:l.al case 8 = O the metric /14.80/ reduces to the GS8del

<
selution [3_8] + The velocity field is u,d‘_-—-(oa,glz.)m 8 Os
We transform: |

XO*CSQS/Z 4iL xol
xt= W x?
xz = (ng[2)" x4

—z 4
X¥=n f=sP) M X2

/14.81/

After the transformation we obtain {watch again x° andxo'):
ds? = (@) + 2x2d@ dx! + 4 (A + 5 x)(dxt) 4

s .. 0t g 2 A+scon X’ 2\ /14.82/
r.__QZS A L dxt d x < T (ddf +
2

_ "L
(4-sDg ()

Now all the conditions /14.1/ ¢ /14.4/ are fulfilled.

15. WOLFE’S PAPER I 571

This paper contains no new solutions, but it deserves

a note here, as it is an attempt at evaluating the angular

veloclity and scalar of shear of the Universe on the basis
of experimental data.



16+ HERLT'S SOLLTION [58]

This solution describes a source of the well=known
NUT solution. It is a portion of perfect fluid in stationary

~ and axially symmetric rotation. ‘_Ihe _metz;ic ia(‘)‘gk
At = — (dx)? =R sin? (& +a) [ (dxd + sirdn2 doZl+ -

2U o x2 N2 /14.83/
+ e (dA+ 4P st dg)
where:

| 1. [(Z’Céw.o axthy rT, k]
e/u =('1“"'32‘)11LU.

y 2R
g /14.84/
—Wo
= <
k= §+uus 4
2 2
vl:' %{" Wo >O
uc) Qo) (,3) Z, nr are constants, Ay C;_) k) '

the Jacobl elliptic function. The components of the energy

- momentum tensor T‘,((S = C/ucl-(-P) ng bbp*' P%o{p are

given by:
W= ‘Ugoé
2 _ 3 2 (5 2V
/'LC'L— RS + R% (,2__32.)1 e /14.85f

LA Tel 2kprudy (z><smo) _
P ’%— RO-D (- ) 6”“[ 'Mmﬁ"'k?k]

It is ecasgy to verify that the derivatives of p and /u, in

the direction of vortex are different from zero, 80 the



second of /14.8/ is broken and certainly Herlt's sclntion

is difterent from ours.

Now we put /14.83/ in the form /14.1/ * /14.4/. Pirst we

transform:
xl‘\ = xo_’
N {
x4 =x3 o | /14.86/
XL = 2 ax sw (—-\1—"——)
. 2 B
¢ =x"

Then /14.83/ changes to /dropping primes/:
dst= 0o 4 xtdxi ~ 05 G (3 4 97)

(dxD> q 204 p~- -x2) 2] 2 /14.87/
x[ Al * T W=

/Prom now on x’ should be substituted for x1 ir the definition
of y/»

Comparing /14.84/ and /14.85/ with /1.1/ and /1.12/ in [1]

we see that /14.87/ fulfils /14.1/ ¢ /14.3/ and /14.6/ it

g= 6", The condition /14.4/ requiree that the determinant

of /14.87/ should be g’ = — ( ntp /C;.)‘L , while actually it
is:

%z_l_‘(s-z_ M‘i( ﬂg_)elu /14.88/

‘Both g and g depend only on z3, 80 we can execute ths

transformation:

=2 R iy +,z)e_(/M_P,C,_>M3 .y

Then /14.87/ fulfils also /14.4/.



17. BKAY’S SOLUTIONS [59] , [60)

In [59] two solutions are}preseﬁted. The euthor
considered the Einstein-Maxwell equations for a rotating
perfect fluld in a magnetic field, starting from a metric
very similar to that of G8del [38) . Here we are interested
only in these special cases, in which the megnetic field is
zero. The first solution from [ 59| does not exist in this
case, while the second one reduces elther to flat metric
or to the G8del solution /according to specific values of
constantsa/ .

Other particular solutions of the same problem, four in
nunber, were presented in [60&.

In the absence of the magnetic field they are as follows:
the fimd and third are flat or identical with G8del’s metdc,
the second one is just flat and the fourth one does not
exist.

However, the notations used by the author are not
- explained in the paper, ard the formulag for the hydrodynaﬁio
or electromagnetic quantities are not given, the only explicit
results being the metrics themselves. Consequently, there
is some possibility that my interpretation of Dr Bray’s
results ig not true. If I have not mistaken, Bray’s sclutions
in the absence of elettromagnetic field are nothing but the
G8del solution. This fact was not indicated in the papers
[59) and [§Ol » and therefore Bray's name is not marked with
a star in the table XII /see below/.



18+ CONFRONTATION OF MODELS OF ROTATING MATTER

The table XII visualizés how many times each mﬁtric
appeared in independent papers, and which discoveries wers
involuntarily repeated. One "cell® contains the names of
the discoverers of the séme solution. The star at author’s

name means that he knew about his predecessors and did not

expect to be first.

19. CORCLUDING REMARKS

It is not clear if our coordinates used in [1] and [2]
are practically useful, They are a kind of "canonical
coordinateg®, ahd are very helpful in comparing the reédy
solutions. However, there are no reasons to claim that they
are generally best. Some simple solutions transformed to
this system of coordinates became very complicated, compare
e.ge /14.14/ with /14.17/, /14.35/ with /14.43/
or /14.71/ with /14.75/+ It would not be easy to obtain these
metrics working in our coordinates. May be theyiara well
fitted Just to the single problem we have considered in [1]

and.[Z] + This question needs tu:ther investigation.
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